CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Trees & Binary Search Trees

Department of Computer Science
University of Maryland, College Park
Trees

- Trees are hierarchical data structures
 - One-to-many relationship between elements
- Tree node / element
 - Contains data
 - Referred to by only 1 (parent) node
 - Contains links to any number of (children) nodes
Trees

- **Terminology**
 - **Root** ⇒ node with no parent
 - **Leaf** ⇒ all nodes with no children
 - **Interior** ⇒ all nodes with children
Trees

- Terminology
 - Sibling ⇒ node with same parent
 - Descendent ⇒ children nodes & their descendants
 - Subtree ⇒ portion of tree that is a tree by itself
 ⇒ a node and its descendents

\[\text{Subtree} \]

\[\text{Siblings} \]
Trees

- Terminology
 - Level ⇒ is a measure of a node’s distance from root
 - Definition of level
 - If node is the root of the tree, its level is 1
 - Else, the node’s level is 1 + its parent’s level
 - Height (depth) ⇒ max level of any node in tree

Height = 3
Binary Trees

- Binary tree
 - Tree with 0–2 children per node
 - Left & right child / subtree
Tree Traversal

- Often we want to
 - Find all nodes in tree
 - Determine their relationship
- Can do this by
 - Walking through the tree in a prescribed order
 - Visiting the nodes as they are encountered
- Process is called *tree traversal*
Tree Traversal

• Goal
 • Visit every node in binary tree

• Approaches
 • **Breadth first** ⇒ closer nodes first
 • **Depth first**
 • Preorder ⇒ *parent*, left child, right child
 • Inorder ⇒ left child, *parent*, right child
 • Postorder ⇒ left child, right child, *parent*

NOTE: left visited before right
Tree Traversal Methods

• **Pre-order**
 1. Visit node // first
 2. Recursively visit left subtree
 3. Recursively visit right subtree

• **In-order**
 1. Recursively visit left subtree
 2. Visit node // second
 3. Recursively right subtree

• **Post-order**
 1. Recursively visit left subtree
 2. Recursively visit right subtree
 3. Visit node // last
Tree Traversal Methods

- **Breadth-first**

BFS(Node n) {

```
Queue Q = new Queue();
Q.enqueue(n); // insert node into Q
while ( !Q.empty()) {
    n = Q.dequeue(); // remove next node
    if ( !n.isEmpty()) {
        visit(n); // visit node
        Q.enqueue(n.Left()); // insert left subtree in Q
        Q.enqueue(n.Right()); // insert right subtree in Q
    }
}
```
Tree Traversal Examples

- Breadth-first
 - $+ \times / \, 2 \, 3 \, 8 \, 4$

- Pre-order (prefix)
 - $+ \times \, 2 \, 3 \, / \, 8 \, 4$

- In-order (infix)
 - $2 \times 3 + 8 / 4$

- Post-order (postfix)
 - $2 \, 3 \, \times \, 8 \, 4 \, / \, +$

Expression tree
Binary Tree Implementation

• **Choice #1:** Using a class to represent a Node

  ```
  Class Node {
      KeyType key;
      Node left, right;  // null if empty
  }
  ```

 Node root = null; // Empty Tree

• **Choice #2:** Using a Polymorphic Binary Tree

 • We will talk about this implementation later on
Types of Binary Trees

- **Degenerate**
 - Mostly 1 child / node
 - Height = $O(n)$
 - Similar to linear list

- **Balanced**
 - Mostly 2 child / node
 - Height = $O(\log(n))$
 - $2^{\text{Height}} - 1 = n$ (# of nodes)
 - Useful for searches

Degenerate binary tree

Balanced binary tree
Binary Search Trees

- Key property
 - Value at node
 - Smaller values in left subtree
 - Larger values in right subtree
- Example
 - Y > X
 - Y < Z
Binary Search Trees

- **Examples**

 - **Binary search trees**
 - Tree 1:
 - 10
 - 5
 - 2
 - 25
 - 30
 - 45
 - Tree 2:
 - 10
 - 2
 - 30
 - 25
 - 45
 - Tree 3:
 - 10
 - 5
 - 45
 - 2
 - 25
 - 30

 - **Non-binary search tree**
Tree Traversal Examples

• In-order
 • 17, 32, 44, 48, 50, 62, 78, 88

Sorted order!

Binary search tree
Example Binary Searches

• Find (2)

2 < 10, left
2 < 5, left
2 = 2, found

2 < 5, left
2 = 2, found
Example Binary Searches

• Find (25)

```
25 > 10, right
25 < 30, left
25 = 25, found

25 > 5, right
25 < 45, left
25 < 30, left
25 > 10, right
25 = 25, found
```
Binary Search Properties

- Time of search
 - Proportional to height of tree
 - Balanced binary tree
 - $O(\log(n))$ time
 - Degenerate tree
 - $O(n)$ time
 - Like searching linked list / unsorted array

- Requires
 - Ability to compare key values
Binary Search Tree Construction

• How to build & maintain binary trees?
 • Insertion
 • Deletion
• Maintain key property (invariant)
 • Smaller values in left subtree
 • Larger values in right subtree
Binary Search Tree – Insertion

• Algorithm
 1. Perform search for value X
 2. Search will end at node Y (if X not in tree)
 3. If X < Y, insert new leaf X as new left subtree for Y
 4. If X > Y, insert new leaf X as new right subtree for Y

• Observations
 • O(log(n)) operation for balanced tree
 • Insertions may unbalance tree
Example Insertion

- Insert (20)

20 > 10, right
20 < 30, left
20 < 25, left
Insert 20 on left
Binary Search Tree – Deletion

• Algorithm
 1. Perform search for value X
 2. If X is a leaf, delete X
 3. Else // must delete internal node
 a) Replace with largest value Y on left subtree
 OR smallest value Z on right subtree
 b) Delete replacement value (Y or Z) from subtree

• Observation
 • $O(\log(n))$ operation for balanced tree
 • Deletions may unbalance tree
Example Deletion (Leaf)

- Delete (25)

10
5 30
2 25 45

25 > 10, right
25 < 30, left
25 = 25, delete
Example Deletion (Internal Node)

• Delete (10)

Replacing 10 with largest value in left subtree
Replacing 5 with largest value in left subtree
Deleting leaf
Example Deletion (Internal Node)

- Delete (10)

Replacing 10 with smallest value in right subtree

Deleting leaf

Resulting tree
Building Maps w/ Search Trees

- Binary Search trees often used to implement maps
 - Each non-empty node contains
 - Key
 - Value
 - Left and right child

- Need to be able to compare keys
 - Generic type `<K extends Comparable<K>>`
 - Denotes any type K that can be compared to K’s
BST (Binary Search Tree) Implementation

- Implementing Tree using traditional approach
- Based on the BST definition below let’s see how to implement typical BST Operations (constructor, add, print, find, isEmpty, isFull, size, height, etc.)

```java
public class BinarySearchTree <K extends Comparable<K>, V> {
    private class Node {
        private K key;
        private V data;
        private Node left, right;
        public Node(K key, V data) {
            this.key = key;
            this.data = data;
        }
    }
    private Node root;
}
```

- **See code distribution:** LectureBinaryTreeCode.zip
BST Testing

• How can we test the correctness of BST Methods?
• What is the best approach?