CMSC 631
Program Analysis and Understanding
Spring 2013

Data Flow Analysis
Data Flow Analysis

• A framework for proving facts about programs

• Reasons about lots of little facts

• Little or no interaction between facts
 ▪ Works best on properties about how program computes

• Based on all paths through program
 ▪ Including infeasible paths

• Operates on control-flow graphs, typically
\[x := a + b; \]
\[y := a \times b; \]
\[\text{while } (y > a) \{ \]
\[\quad a := a + 1; \]
\[\quad x := a + b \]
\[\}\]
Control-Flow Graph w/Basic Blocks

x := a + b;
y := a * b;
while (y > a + b) {
 a := a + 1;
 x := a + b
}

• Can lead to more efficient implementations
• But more complicated to explain, so...
 ▪ We’ll use single-statement blocks in lecture today
Example with Entry and Exit

x := a + b;
y := a * b;
while (y > a) {
 a := a + 1;
 x := a + b
}

- All nodes without a (normal) predecessor should be pointed to by entry
- All nodes without a successor should point to exit
Notes on Entry and Exit

- Typically, we perform data flow analysis on a function body
- Functions usually have
 - A unique entry point
 - Multiple exit points
- So in practice, there can be multiple exit nodes in the CFG
 - For the rest of these slides, we’ll assume there’s only one
 - In practice, just treat all exit nodes the same way as if there’s only one exit node
Available Expressions

- An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e was computed on the paths to p

- Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it’s still in a register somewhere)
Data Flow Facts

- Is expression e available?
- Facts:
 - $a + b$ is available
 - $a \times b$ is available
 - $a + 1$ is available
Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := a + b$</td>
<td>$a + b$</td>
<td></td>
</tr>
<tr>
<td>$y := a \times b$</td>
<td>$a \times b$</td>
<td></td>
</tr>
<tr>
<td>$a := a + 1$</td>
<td></td>
<td>$a + 1$, $a + b$, $a \times b$</td>
</tr>
</tbody>
</table>
Computing Available Expressions

∅

entry

x := a + b

{a + b}

y := a * b

{a + b, a * b}

y > a

{a + b, a * b}

a := a + 1

∅

x := a + b

{a + b}

exit

{a + b}
Terminology

• A joint point is a program point where two branches meet

• Available expressions is a forward must problem
 ▪ Forward = Data flow from in to out
 ▪ Must = At join point, property must hold on all paths that are joined
Data Flow Equations

• Let s be a statement
 - $\text{succ}(s) = \{ \text{immediate successor statements of } s \}$
 - $\text{pred}(s) = \{ \text{immediate predecessor statements of } s \}$
 - $\text{in}(s) = \text{program point just before executing } s$
 - $\text{out}(s) = \text{program point just after executing } s$

• $\text{in}(s) = \bigcap_{s' \in \text{pred}(s)} \text{out}(s')$

• $\text{out}(s) = \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s))$
 - Note: These are also called transfer functions
Liveness Analysis

• A variable v is *live* at program point p if
 - v will be used on some execution path originating from p...
 - before v is overwritten

• Optimization
 - If a variable is not live, no need to keep it in a register
 - If variable is dead at assignment, can eliminate assignment
Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths

- Liveness is a *backward may* problem
 - To know if variable live, need to look at future uses
 - Variable is live if used on some path

- \[
 \text{out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{in}(s')
\]

- \[
 \text{in}(s) = \text{gen}(s) \cup (\text{out}(s) - \text{kill}(s))
\]
Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a, b</td>
<td>x</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a, b</td>
<td>y</td>
</tr>
<tr>
<td>y > a</td>
<td>a, y</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Computing Live Variables

\{x, y, a, b\}

\{x\}

\{x, y, a, b\}

\{x, y, a, b\}

\{x, y, a, b\}

\{x, y, a, b\}

\{x, y, a, b\}
Very Busy Expressions

- An expression e is *very busy* at point p if
 - On every path from p, expression e is evaluated before the value of e is changed

- Optimization
 - Can hoist very busy expression computation

- What kind of problem?
 - Forward or backward? *backward*
 - May or must? *must*
A definition of a variable v is an assignment to v.

A definition of variable v reaches point p if:
- There is no intervening assignment to v.

Also called def-use information.

What kind of problem?
- Forward or backward? forward
- May or must? may
Space of Data Flow Analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

- Most data flow analyses can be classified this way
 - A few don’t fit: bidirectional analysis
- Lots of literature on data flow analysis
Solving data flow equations

• Let’s start with forward may analysis
 ■ Dataflow equations:
 - \(\text{in}(s) = \bigcup_{s' \in \text{pred}(s)} \text{out}(s') \)
 - \(\text{out}(s) = \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s)) \)

• Need algorithm to compute \(\text{in} \) and \(\text{out} \) at each stmt

• Key observation: \(\text{out}(s) \) is monotonic in \(\text{in}(s) \)
 ■ \(\text{gen}(s) \) and \(\text{kill}(s) \) are fixed for a given \(s \)
 ■ If, during our algorithm, \(\text{in}(s) \) grows, then \(\text{out}(s) \) grows
 ■ Furthermore, \(\text{out}(s) \) and \(\text{in}(s) \) have max size

• Same with \(\text{in}(s) \)
 ■ in terms of \(\text{out}(s') \) for predecessors \(s' \)
Solving data flow equations (cont’d)

- Idea: fixpoint algorithm
 - Set \(\text{out(entry)} \) to emptyset
 - E.g., we know no definitions reach the entry of the program
 - Initially, assume \(\text{in(s)}, \text{out(s)} \) empty everywhere else, also
 - Pick a statement \(s \)
 - Compute \(\text{in(s)} \) from predecessors’ \(\text{out’s} \)
 - Compute new \(\text{out(s)} \) for \(s \)
 - Repeat until nothing changes

- Improvement: use a worklist
 - Add statements to worklist if their \(\text{in(s)} \) might change
 - Fixpoint reached when worklist is empty
Forward May Data Flow Algorithm

\[
\begin{align*}
\text{out(entry)} &= \emptyset \\
\text{for all other statements } s: & \\
\text{out(s)} &= \emptyset \\
W &= \text{all statements} \quad \text{ // worklist} \quad \\
\text{while } W \text{ not empty:} & \\
\text{take } s \text{ from } W & \\
\text{in(s)} &= \bigcup_{s' \in \text{pred}(s)} \text{out}(s') \\
\text{temp} &= \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s)) \\
\text{if } \text{temp} \neq \text{out(s)} \text{ then} & \\
\text{out(s)} &= \text{temp} \\
W &= W \cup \text{succ}(s) \\
\end{align*}
\]
Generalizing

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>in(s) = $\bigcup_{s' \in \text{pred}(s)} \text{out}(s')$</td>
<td>in(s) = $\bigcap_{s' \in \text{pred}(s)} \text{out}(s')$</td>
</tr>
<tr>
<td></td>
<td>out(s) = gen(s) \cup (in(s) - kill(s))</td>
<td>out(s) = gen(s) \cup (in(s) - kill(s))</td>
</tr>
<tr>
<td></td>
<td>out(entry) = \emptyset</td>
<td>out(entry) = \emptyset</td>
</tr>
<tr>
<td></td>
<td>initial out elsewhere = \emptyset</td>
<td>initial out elsewhere = ${\text{all facts}}$</td>
</tr>
<tr>
<td>Backward</td>
<td>out(s) = $\bigcup_{s' \in \text{succ}(s)} \text{in}(s')$</td>
<td>out(s) = $\bigcap_{s' \in \text{succ}(s)} \text{in}(s')$</td>
</tr>
<tr>
<td></td>
<td>in(s) = gen(s) \cup (out(s) - kill(s))</td>
<td>in(s) = gen(s) \cup (out(s) - kill(s))</td>
</tr>
<tr>
<td></td>
<td>in(exit) = \emptyset</td>
<td>in(exit) = \emptyset</td>
</tr>
<tr>
<td></td>
<td>initial in elsewhere = \emptyset</td>
<td>initial out elsewhere = ${\text{all facts}}$</td>
</tr>
</tbody>
</table>
Outgoing statements analysis:

\[
\text{out(\text{entry})} = \emptyset
\]

for all other statements \(s \)

\[
\text{out}(s) = \emptyset
\]

\[W = \text{all statements} \quad \text{// worklist} \]

while \(W \) not empty

take \(s \) from \(W \)

\[
\text{in}(s) = \bigcup_{s' \in \text{pred}(s)} \text{out}(s')
\]

\[
\text{temp} = \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s))
\]

if \(\text{temp} \neq \text{out}(s) \) then

\[
\text{out}(s) = \text{temp}
\]

\[
W := W \cup \text{succ}(s)
\]

end

end

\[
\text{out(\text{entry})} = \emptyset
\]

for all other statements \(s \)

\[
\text{out}(s) = \text{all facts}
\]

\[W = \text{all statements} \]

while \(W \) not empty

take \(s \) from \(W \)

\[
\text{in}(s) = \bigcap_{s' \in \text{pred}(s)} \text{out}(s')
\]

\[
\text{temp} = \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s))
\]

if \(\text{temp} \neq \text{out}(s) \) then

\[
\text{out}(s) = \text{temp}
\]

\[
W := W \cup \text{succ}(s)
\]

end

end

\[\text{May} \quad \text{Must} \]
Backward Analysis

in(exit) = ∅
for all other statements s
 in(s) = ∅
W = all statements
while W not empty
 take s from W
 out(s) = \bigcup_{s' \in \text{succ}(s)} \text{in}(s')
 temp = \text{gen}(s) \cup (\text{out}(s) - \text{kill}(s))
 if temp ≠ \text{in}(s) then
 in(s) = temp
 W := W \cup \text{pred}(s)
 end
end

May

Must
Practical Implementation

- Represent set of facts as bit vector
 - Fact_i represented by bit i
 - Intersection = bitwise and, union = bitwise or, etc
- “Only” a constant factor speedup
 - But very useful in practice
Generalizing Further

• Observe out(s) is a function of out(s’) for preds s’

\[\text{out}(s) = \text{gen}(s) \cup \left(\bigcup_{s' \in \text{pred}(s)} \text{out}(s') \right) - \text{kill}(s) \]

- We can define other kinds of functions, to compute other kinds of information using dataflow analysis!

• Example: constant propagation
 - Facts — variable x has value n (at this program point)
 - Not quite gen/kill:

```c
/* facts: a = 1, b = 2 */
x = a + b
/* facts: a = 1, b = 2, x = 3 */
```

- Fact that x is 3 not determined syntactically by statement
- So, how can we use data flow analysis to handle this case?
Partial Orders

- To generalize data flow analysis, need to introduce two mathematical structures:
 - Partial orders
 - Lattices

- A *partial order* (p.o.) is a pair \((P, \leq)\) such that
 - \(\leq \subseteq P \times P\)
 - \(\leq\) is reflexive: \(x \leq x\)
 - \(\leq\) is anti-symmetric: \(x \leq y\) and \(y \leq x\) \(\Rightarrow x = y\)
 - \(\leq\) is transitive: \(x \leq y\) and \(y \leq z\) \(\Rightarrow x \leq z\)
Examples

- (\mathbb{N}, \leq)
 - Natural numbers with standard inequality
- $(\mathbb{N} \cup \{\infty\}, \leq)$
 - Natural numbers plus infinity, with standard inequality
- (\mathbb{Z}, \leq)
 - Integers with standard inequality
- For any set S, $(2^S, \subseteq)$
 - The powerset partial order
- For any set S, $(S, =)$
 - The discrete partial order
- A 2-crown $(\{a,b,c,d\}, \{a< c, a< d, b< c, b< d\})$
We can write partial orders as graphs using the following conventions:

- Nodes are elements of the p.o.
- Edge from element lower on page to high on page means lower element is strictly less than higher element.

\[(N, \leq)\]

\[
\begin{array}{cccccc}
\infty & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 1 & 2 & 1 & 0 & -1 \\
\end{array}
\]
Drawing Partial Orders (cont’d)

\[
\begin{align*}
\{a,b,c\}, \subseteq & \quad \{a,b,c\}, = \\
\text{2-crown} &
\end{align*}
\]
Meet and Join Operations

• □ is the meet or greatest lower bound operation:
 - $x \sqcap y \leq x$ and $x \sqcap y \leq y$
 - if $z \leq x$ and $z \leq y$ then $z \leq x \sqcap y$

• ⊔ is the join or least upper bound operation:
 - $x \leq x \sqcup y$ and $y \leq x \sqcup y$
 - if $x \leq z$ and $y \leq z$ then $x \sqcup y \leq z$
Examples

- \((\mathbb{N}, \leq), (\mathbb{N} \cup \{\infty\}, \leq), (\mathbb{Z}, \leq)\)
 - \(\cap = \text{min}, \cup = \text{max}\)
- For any set \(S\), \((2^S, \subseteq)\)
 - \(\cap = \cap, \cup = \cup\)
- For any set \(S\), \((S, =)\)
 - \(\cap\) and \(\cup\) only defined when element is the same
- A 2-crown \(\{(a,b,c,d), \{a < c, a < d, b < c, b < d\}\}\)
 - \(a \cup b\) and \(c \cap d\) undefined
Lattices

• A p.o. is a *lattice* if \(\sqcap \) and \(\sqcup \) are defined on any two elements

 ▪ A partial order is a *complete lattice* if \(\sqcap \) and \(\sqcup \) are defined on any set

• A lattice has unique elements \(\bot \) (“bottom”) and \(\top \) (“top”) such that

 ▪ \(x \sqcap \bot = \bot \) \hspace{1cm} \(x \sqcup \bot = x \)
 ▪ \(x \sqcap \top = x \) \hspace{1cm} \(x \sqcup \top = \top \)

• In a lattice,

 ▪ \(x \leq y \) iff \(x \sqcap y = x \)
 ▪ \(x \leq y \) iff \(x \sqcup y = y \)
Examples

• \((N, \leq)\)
 - \(- = 0, \top \) undefined; is a lattice, but not a complete lattice

• \((N \cup \{\infty\}, \leq)\)
 - \(- = 0, \top = \infty;\) is a complete lattice

• \((Z, \leq)\)
 - \(-, \top \) undefined; is a lattice, but not a complete lattice

• For any set \(S, (2^S, \subseteq)\)
 - \(- = \emptyset, \top = S,\) is a complete lattice

• For any set \(S, (S, =)\)
 - \(-, \top \) undefined; not a lattice

• A 2-crown \(\{a,b,c,d\}, \{a\leq c, a\leq d, b\leq c, b\leq d\}\)
 - \(-, \top \) undefined; not a lattice
Flipping a Lattice

- **Lemma:** If \((P, \leq)\) is a lattice, then \((P, \lambda xy. y \leq x)\) is also a lattice
 - i.e., if we flip the sense of \(\leq\), we still have a lattice

- **Examples:**

\[
\begin{align*}
&\text{0} \\
&\text{1} \\
&\text{2} \\
&\vdots \\
&\vdots \\
&\vdots \\
&\{a, b, c\}, \geq
\end{align*}
\]

\[
\begin{align*}
&\emptyset \\
&a, b \\
&b, c \\
&c, \emptyset \\
&a, b, c \\
&\{a, b, c\}, \geq
\end{align*}
\]
Cross-product lattice

• Lemma: Suppose (P, \leq_1) and (Q, \leq_2) are lattices. Then $(P \times Q, \leq)$ is also a lattice, where
 - $(p,q) \leq (p', q')$ iff $p \leq_1 p'$ and $q \leq_2 q'$
 - (Can also take cross product of more than 2 lattices, in the natural way)

• Examples:

\[
\begin{array}{ccc}
 b & d & (b,d) \\
 \times & & (b,c) \\
 a & c & (a,d)
\end{array}
\]

\[
\begin{array}{ccc}
 (b,d) & (b,c) & (a,d) \\
 (b,c) & (a,d) & (a,c)
\end{array}
\]

\[
\begin{array}{ccc}
 (b,d) & (b,c) & (a,d) \\
 (b,c) & (a,d) & (a,c)
\end{array}
\]

\[
\begin{array}{ccc}
 (b,d,f) & (b,c,f) & (a,d,f) \\
 (b,d,f) & (b,c,f) & (a,d,f)
\end{array}
\]

\[
\begin{array}{ccc}
 (b,d,f) & (b,c,f) & (a,d,f) \\
 (b,d,f) & (b,c,f) & (a,d,f)
\end{array}
\]
Data Flow Facts and Lattices

- Sets of dataflow facts form the powerset lattice
 - Example: Available expressions

```
(a+b, a*b, a+1)
 /     \
(a+b, a*) /   \(a+b, a+1)
 /     \   /     \\
(a*b, a+1)(none)(a*b, a+1)
     \\
(a+b)(a+1)
     \\
(a*b)(none)
```
Transfer Functions

• Recall this step from *forward must* analysis:

\[
\text{in}(s) := \bigcap_{s' \in \text{pred}(s)} \text{out}(s')
\]

\[
\text{temp} := \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s))
\]

• Let’s recast this in terms of powerset lattice
 - \(\bigcap\) is \(\cap\) in the lattice
 - \(\text{gen}(s), \text{kill}(s)\) are fixed
 - So \(\text{temp}\) is a function of \(\text{in}(s)\)
 - Putting this together:

\[
\text{in}(s) := \bigcap_{s' \in \text{pred}(s)} \text{out}(s')
\]

\[
\text{temp} := f_s(\text{in}(s))
\]

where \(f_s(x) = \text{gen}(s) \cup (x - \text{kill}(s))\)

\(f_s\) is a *transfer function*
Forward May Analysis

• What about forward may analysis?

\[
\text{in}(s) := \bigcup_{s' \in \text{pred}(s)} \text{out}(s') \\
\text{temp} := \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s))
\]

- We can just use the flipped powerset lattice
 - \(\cup \) is \(\cap \) is that lattice
- So we get the same equations

\[
\text{in}(s) := \bigcap_{s' \in \text{pred}(s)} \text{out}(s') \\
\text{temp} := f_s(\text{in}(s)) \\
\text{where } f_s(x) = \text{gen}(s) \cup \text{in}(s) - \text{kill}(s)
\]

• Same idea for must/may backward analysis
 - But still separate from forward analysis
Initial Facts

• Recall also from forward must analysis:

\[\text{out(entry)} = \emptyset \]
\[\text{initial out elsewhere} = \{\text{all facts}\} \]

• Values of these in lattice terms depends on analysis
 - Available expressions
 - \(\text{out(entry)} \) is the same as \(\bot \)
 - initial out elsewhere is the same as \(\top \)
 - Reaching definitions (with \(\leq \) as \(\supseteq \))
 - \(\text{out(entry)} \) is \(\emptyset \) which is \(\top \) in this lattice (flipped powerset)
 - initial out elsewhere is also \(\top \)
Data Flow Analysis, over Lattices

out(entry) = (as given)
for all other statements s
 out(s) = ⊤
W = all statements // worklist
while W not empty
 take s from W
 in(s) = ⨍ s' ∈ pred(s) out(s')
 temp = f_s(in(s))
 if temp ≠ out(s) then
 out(s) = temp
 W := W ∪ succ(s)
 end
end

in(exit) = (as given)
for all other statements s
 in(s) = ⊤
W = all statements
while W not empty
 take s from W
 out(s) = ⨍ s' ∈ succ(s) in(s')
 temp = f_s(out(s))
 if temp ≠ in(s) then
 in(s) = temp
 W := W ∪ pred(s)
 end
end

Forward
(Red = varies by analysis)

Backward
DFA over Lattices, cont’d

- A dataflow analysis is defined by 4 things:
 - Forward or backward
 - The lattice
 - Data flow facts
 - \(\cap \) operation
 - In terms of gen/kill dfa, this specifies may or must
 - \(\top \) value
 - In terms of gen/kill dfa, this specifies the initial facts assumed at each statement
 - Transfer functions
 - In terms of gen/kill dfa, this defines gen and kill
 - Facts at entry (for forward) or exit (for backward)
 - In terms of gen/kill dfa, this defines set of facts for entry or exit node
Four Analyses as Lattices \((P, \leq)\)

- **Available expressions**
 - Forward analysis
 - \(P = \text{sets of expressions}\)
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \text{set of all expressions}\)
 - \(\text{Entry facts} = \emptyset = \text{no expressions available at entry}\)

- **Reaching Definitions**
 - Forward analysis
 - \(P = \text{set of definitions (assignment statements)}\)
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \text{empty set}\)
 - \(\text{Entry facts} = \emptyset = \text{no definitions reach entry}\)
Four Analyses as Lattices \((P, \leq)\)

- **Very busy expressions**
 - Backward analysis
 - \(P = \text{sets of expressions}\)
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \text{set of all expressions}\)
 - \(\text{Exit facts} = \emptyset = \text{no expressions busy at exit}\)

- **Live variables**
 - Backward analysis
 - \(P = \text{set of variables}\)
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \emptyset = \text{empty set}\)
 - \(\text{Exit facts} = \emptyset = \text{no variables live at exit}\)
Constant Propagation

• Idea: maintain possible value of each variable

\[L_a = \ldots \lor a=-1 \lor a=0 \lor a=1 \ldots \]

- \(\top \) = initial value = haven’t seen assignment to \(a \) yet
- \(\bot \) = multiple different possible values for \(a \)

• DFA definition:
 - Forward analysis
 - Lattice = \(L_a \times L_b \times \ldots \) (for all variables in program)
 - I.e., maintain one possible value of each variable
 - Initial facts (at entry) = \(\top \) (variables all unassigned)
Monotonicity and Desc. Chain

• A function f on a partial order is monotonic (or order preserving) if

 $$x \leq y \Rightarrow f(x) \leq f(y)$$

 - Examples
 - $\lambda x. x+1$ on partial order (\mathbb{Z}, \leq) is monotonic
 - $\lambda x. -x$ on partial order (\mathbb{Z}, \leq) is not monotonic

• Transfer functions in gen/kill DFA are monotonic

 - $\text{temp} = \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s))$
 - Holds because $\text{gen}(s)$ and $\text{kill}(s)$ are fixed
 - Thus, if we shrink $\text{in}(s)$, temp can only shrink

• A descending chain in a lattice is a sequence

 $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots$

 - Height of lattice = length of longest descending chain
Monotonicity and Transfer Fns

• If f_s is monotonic, how often can we apply this step?

$$\text{in}(s) = \bigcap_{s' \in \text{pred}(s)} \text{out}(s')$$
$$\text{temp} = f_s(\text{in}(s))$$

- **Claim:** $\text{out}(s)$ only shrinks
 - **Proof:** $\text{out}(s)$ starts out as \top
 - Assume $\text{out}(s')$ shrinks for all predecessors s' of s
 - Then $\bigcap_{s' \in \text{pred}(s)} \text{out}(s')$ shrinks
 - Since f_s monotonic, $f_s(\bigcap_{s' \in \text{pred}(s)} \text{out}(s'))$ shrinks
Termination

• Suppose we have a DFA with
 - Finite height lattice
 - Monotonic transfer functions

• Then, at every step in DFA we
 - Remove a statement from the worklist, and/or
 - Strictly decrease some dataflow fact at a program point
 - (By monotonicity)
 - Only add new statements to worklist after strict decrease
 - ⇒ termination! (by finite height)

• Moreover, must terminate in $O(nk)$ time
 - $n = \#$ of statements in program
 - $k = \text{height of lattice}$
 - (assumes meet operation takes $O(1)$ time)
Fixpoints

• We always start with \top
 - E.g., every expr is available, no defns reach this point
 - Most optimistic assumption
 - Strongest possible hypothesis
 - = true of fewest number of states

• Revise as we encounter contradictions
 - Always move down in the lattice (with meet)

• Result: A greatest fixpoint solution of the data flow equations
Least vs. Greatest Fixpoints

• Dataflow tradition: Start with \top, use \sqcap
 - Computes a greatest fixpoint
 - Technically, rather than a lattice, we only need a finite height meet semilattice with top
 - finite height meet semilattice with top
 - $(meet\ semilattice = a \sqcap b$ defined on any a,b but $a \sqcup b$ may not be defined)

• Denotational semantics trad.: Start with \bot, use \sqcup
 - Computes least fixpoint

• So, direction of DFA may depend on community author comes from...
Distributive Dataflow Problems

- A monotonic transfer function f also satisfies

$$f(x \sqcap y) \leq f(x) \sqcap f(y)$$

- Proof: By monotonicity, $f(x \sqcap y) \leq f(x)$ and $f(x \sqcap y) \leq f(y)$, i.e., $f(x \sqcap y)$ is a lower bound of $f(x)$ and $f(y)$. But then since \sqcap is the greatest lower bound, $f(x \sqcap y) \leq f(x) \sqcap f(y)$.

- A transfer function f is *distributive* if it satisfies

$$f(x \sqcap y) = f(x) \sqcap f(y)$$

- Notice this is stronger than monotonicity
Benefit of Distributivity

• Suppose we have the following CFG with four statements, a, b, c, d, with transfer fns \(f_a, f_b, f_c, f_d \)

\[
\begin{align*}
\text{out}(a) &= f_a(\text{in}(a)) \\
\text{out}(b) &= f_b(\text{in}(b)) \\
\text{out}(c) &= f_c(\text{out}(a) \sqcap \text{out}(b)) = f_c(f_a(\text{in}(a)) \sqcap f_b(\text{in}(b))) = f_c(f_c(f_a(\text{in}(a)))) \sqcap f_c(f_c(f_b(\text{in}(b)))) \\
\text{out}(d) &= f_d(\text{out}(c)) = f_d(f_c(f_a(\text{in}(a)))) \sqcap f_d(f_c(f_b(\text{in}(b)))) = f_d(f_c(f_c(f_a(\text{in}(a)))) \sqcap f_d(f_c(f_c(f_b(\text{in}(b))))))
\end{align*}
\]

Then joins lose no information!
Ideally, we would like to compute the *meet over all paths* (MOP) solution:

- If p is a path through the CFG, let f_p be the composition of transfer functions for the statements along p
- Let $\text{path}(s)$ be the set of paths from the entry to s
- Define

$$MOP(s) = \bigcap_{p \in \text{path}(s)} f_p(\top)$$

- I.e., $MOP(s)$ is the set of dataflow facts if we separately apply the transfer functions along every path (assuming \top is the initial value at the entry) and then apply \cap to the result
- This is the best we could possibly do if we want one data flow fact per program point and we ignore conditional tests along the path

If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution!
What Problems are Distributive?

• Analyses of how the program computes
 ▪ Live variables
 ▪ Available expressions
 ▪ Reaching definitions
 ▪ Very busy expressions

• All gen/kill problems are distributive
A Non-Distributive Example

• Constant propagation

\[
\begin{align*}
x &:= 1 \\
y &:= 2 \\
z &:= x + y
\end{align*}
\]

\[
\begin{align*}
x &:= 2 \\
y &:= 1
\end{align*}
\]

- \(\{x=1, y=2\} \cap \{x=2, y=1\} = \{x=\perp, y=\perp\}\)
- The join at \(\text{in}(z:=x+y)\) loses information
- But in fact, \(z=3\) every time we run this program

• In general, analysis of \textit{what} the program computes is not distributive
Basic Blocks

• Recall a *basic block* is a sequence of statements s.t.
 - No statement except the last in a branch
 - There are no branches to any statement in the block except the first

• In some data flow implementations,
 - Compute gen/kill for each basic block as a whole
 - Compose transfer functions
 - Store only in/out for each basic block
 - Typical basic block ~5 statements
 - At least, this used to be the case...
Order Matters

• Assume forward data flow problem
 ▪ Let $G = (V, E)$ be the CFG
 ▪ Let k be the height of the lattice

• If G acyclic, visit in topological order
 ▪ Visit head before tail of edge

• Running time $O(|E|)$
 ▪ No matter what size the lattice
Order Matters — Cycles

• If G has cycles, visit in reverse postorder
 ▪ Order from depth-first search
 ▪ (Reverse for backward analysis)

• Let $Q = \max$ # back edges on cycle-free path
 ▪ Nesting depth
 ▪ Back edge is from node to ancestor in DFS tree

• If $\forall x.f(x) \leq x$ (sufficient, but not necessary), then running time is $O((Q+1)|E|)$
 ▪ Proportional to structure of CFG rather than lattice
Flow-Sensitivity

• Data flow analysis is flow-sensitive
 ▪ The order of statements is taken into account
 ▪ I.e., we keep track of facts per program point

• Alternative: Flow-insensitive analysis
 ▪ Analysis the same regardless of statement order
 ▪ Standard example: types
 - /* x : int */ x := ... /* x : int */
Data Flow Analysis and Functions

• What happens at a function call?
 ■ Lots of proposed solutions in data flow analysis literature

• In practice, only analyze one procedure at a time

• Consequences
 ■ Call to function kills all data flow facts
 ■ May be able to improve depending on language, e.g., function call may not affect locals
More Terminology

- An analysis that models only a single function at a time is *intraprocedural*.
- An analysis that takes multiple functions into account is *interprocedural*.
- An analysis that takes the whole program into account is *whole program*.

- Note: *global* analysis means “more than one basic block,” but still within a function.
 - Old terminology from when computers were slow...
Data Flow Analysis and The Heap

• Data Flow is good at analyzing local variables
 ▶ But what about values stored in the heap?
 ▶ Not modeled in traditional data flow

• In practice: $x := e$
 ▶ Assume all data flow facts killed (!)
 ▶ Or, assume write through x may affect any variable whose address has been taken

• In general, hard to analyze pointers
Proebsting’s Law

• Moore’s Law: Hardware advances double computing power every 18 months.

• Proebsting’s Law: Compiler advances double computing power every 18 years.
 - Not so much bang for the buck!
DFA and Defect Detection

- LCLint - Evans et al. (UVa)
- METAL - Engler et al. (Stanford, now Coverity)
- ESP - Das et al. (MSR)
- FindBugs - Hovemeyer, Pugh (Maryland)
 - For Java. The first three are for C.

- Many other one-shot projects
 - Memory leak detection
 - Security vulnerability checking (tainting, info. leaks)