CMSC 330: Organization of Programming Languages

Finite Automata 2

Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far

- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - i.e., transition function must be a valid function
 - DFA is a special case of NFA

NFA for (a|b)*abb

- ba
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string
Another example DFA

Language?
• \((ab|aba)^*\)

Comparing DFAs and NFAs (cont.)

• NFAs may have transitions with empty string label
 • May move to new state without consuming character

 \(\varepsilon\)-transition

• DFA transition must be labeled with symbol
 • DFA is a special case of NFA
NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states S0, S1
- **ababa**
 - Has paths to S0, S1
 - Need to use \(\varepsilon\)-transition

Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Formal Definition

A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

- \(\Sigma\) is an alphabet
 - the strings recognized by the DFA are over this set
- \(Q\) is a nonempty set of states
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final states
 - How many can there be?
- \(\delta : Q \times \Sigma \to Q\) specifies the DFA’s transitions
 - What’s this definition saying that \(\delta\) is?

A DFA accepts \(s\) if it stops at a final state on \(s\)

Formal Definition: Example

- \(\Sigma = \{0, 1\}\)
- \(Q = \{S_0, S_1\}\)
- \(q_0 = S_0\)
- \(F = \{S_1\}\)
- \(\delta\) table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S0</td>
<td>S1</td>
</tr>
<tr>
<td>S1</td>
<td>S0</td>
<td>S1</td>
</tr>
</tbody>
</table>
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA's transitions
 - Transitions on \(\varepsilon\) are allowed – can optionally take these transitions without consuming any input
 - Can have more than one transition for a given state and symbol
- An NFA accepts \(s\) if there is at least one path from its start to final state on \(s\)

Reducing Regular Expressions to NFAs

- Goal: Given regular expression \(e\), construct NFA: \(\langle e \rangle = (\Sigma, Q, q_0, F, \delta)\)
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: \(|F| = 1\) in our NFAs
 - Recall \(F\) = set of final states
- Base case: \(a\)

 \[\langle a \rangle = (\{a\}, \{S0, S1\}, S0, \{S1\}, \{(S0, a, S1)\}) \]
Reduction (cont.)

- Base case: ε

$<\varepsilon> = (\varepsilon, \{S0\}, S0, \{S0\}, \emptyset)$

- Base case: \emptyset

$<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$

Reduction: Concatenation

- Induction: AB

$<A>\quad $
Reduction: Concatenation (cont.)

- Induction: AB

\[
\begin{align*}
\langle A \rangle &= (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \\
\langle B \rangle &= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \\
\langle AB \rangle &= (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})
\end{align*}
\]

Reduction: Union

- Induction: (A|B)
Reduction: Union (cont.)

- Induction: \((A|B)\)

\[
\begin{align*}
<A> & = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \\
 & = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \\
<(A|B)> & = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \\
& \quad \delta_A \cup \delta_B \cup \{(S0,\varepsilon,q_A), (S0,\varepsilon,q_B), (f_A,\varepsilon,S1), (f_B,\varepsilon,S1)\})
\end{align*}
\]

Reduction: Closure

- Induction: \(A^*\)
Reduction: Closure (cont.)

- **Induction:** A^*

 \[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \]
 \[<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \{(f_A, \varepsilon, S1), (S0, \varepsilon, q_A), (S0, \varepsilon, S1), (S1, \varepsilon, S0)\}) \]

Reduction Complexity

- **Given a regular expression** A **of size** n...

 Size = # of symbols + # of operations

- **How many states does** $<A>$ **have?**

 - 2 added for each $|$, 2 added for each *
 - $O(n)$
 - That’s pretty good!
Practice

Draw NFAs for the following regular expressions and languages

- \((0|1)^*110^*\)
- \(101^*111\)
- all binary strings ending in 1 (odd numbers)
- all alphabetic strings which come after “hello” in alphabetic order
- \((ab^*c|d^*a|ab)d\)

Recap

- Finite automata
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)

- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

- Reducing RE to NFA
 - Concatenation
 - Union
 - Closure
Next

- Reducing NFA to DFA
 - ε-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

How NFA Works

- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - ε-transitions
- Example
 - After processing “a”
 - NFA may be in states
 S1
 S2
 S3

Diagram:

- Transition labels:
 - a
 - ε
- States:
 - S1
 - S2
 - S3
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states

- Example

```
\begin{center}
\begin{tikzpicture}
  \node[state, initial] (S1) at (0,0) {S1};
  \node[state] (S2) at (1,0) {S2};
  \node[state] (S3) at (2,0) {S3};
  \node[state] (S) at (3,0) {S1, S2, S3};
  \draw (S1) edge[->] node {$a$} (S2);
  \draw (S2) edge[->, bend right] node {$\epsilon$} (S3);
  \draw (S3) edge[->] node {$a$} (S);
\end{tikzpicture}
\end{center}
```

Reducing NFA to DFA (cont.)

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA ($\Sigma, Q, q_0, F_n, \delta$)
 - Output
 - DFA ($\Sigma, R, r_0, F_d, \delta$)
 - Using
 - ϵ-closure(p)
 - move(p, a)
\(\varepsilon\)-transitions and \(\varepsilon\)-closure

- We say \(p \xrightarrow{\varepsilon} q\)
 - If it is possible to go from state \(p\) to state \(q\) by taking only \(\varepsilon\)-transitions
 - If \(\exists p, p_1, p_2, \ldots, p_n, q \in Q\) such that
 \[
 \{p, \varepsilon, p_1\} \in \delta, \{p_1, \varepsilon, p_2\} \in \delta, \ldots, \{p_n, \varepsilon, q\} \in \delta
 \]

- \(\varepsilon\)-closure(\(p\))
 - Set of states reachable from \(p\) using \(\varepsilon\)-transitions alone
 - Set of states \(q\) such that \(p \xrightarrow{\varepsilon} q\)
 - \(\varepsilon\)-closure(\(p\)) = \(\{q \mid p \xrightarrow{\varepsilon} q\}\)
 - Note
 - \(\varepsilon\)-closure(\(p\)) always includes \(p\)
 - \(\varepsilon\)-closure() may be applied to set of states (take union)

\(\varepsilon\)-closure: Example 1

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_2\)
 - \(S_2 \xrightarrow{\varepsilon} S_3\)
 - \(S_1 \xrightarrow{\varepsilon} S_3\)

- \(\varepsilon\)-closures
 - \(\varepsilon\)-closure(\(S_1\)) = \(\{S_1, S_2, S_3\}\)
 - \(\varepsilon\)-closure(\(S_2\)) = \(\{S_2, S_3\}\)
 - \(\varepsilon\)-closure(\(S_3\)) = \(\{S_3\}\)
 - \(\varepsilon\)-closure(\(\{S_1, S_2\}\)) = \(\{S_1, S_2, S_3\} \cup \{S_2, S_3\}\)
ε-closure: Example 2

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_3 \)
 - \(S_3 \xrightarrow{\varepsilon} S_2 \)
 - \(S_1 \xrightarrow{\varepsilon} S_2 \)

- **ε-closures**
 - \(\varepsilon\text{-closure}(S_1) = \{ S_1, S_2, S_3 \} \)
 - \(\varepsilon\text{-closure}(S_2) = \{ S_2 \} \)
 - \(\varepsilon\text{-closure}(S_3) = \{ S_2, S_3 \} \)
 - \(\varepsilon\text{-closure}(\{ S_2, S_3 \}) = \{ S_2 \} \cup \{ S_2, S_3 \} \)

ε-closure: Practice

- Find ε-closures for following NFA

- Find ε-closures for the NFA you construct for
 - The regular expression \((0|1^*)111(0^*1)\)
Calculating move(p,a)

- **move(p,a)**
 - Set of states reachable from p using exactly one transition on a
 - Set of states q such that \(\{p, a, q\} \in \delta \)
 - \(\text{move}(p,a) = \{q \mid \{p, a, q\} \in \delta\} \)

- Note move(p,a) may be empty \(\emptyset\)
 - If no transition from p with label a

move(a,p) : Example 1

- Following NFA
 - \(\Sigma = \{a, b\} \)

- Move
 - move(S1, a) = \{S2, S3\}
 - move(S1, b) = \emptyset
 - move(S2, a) = \emptyset
 - move(S2, b) = \{S3\}
 - move(S3, a) = \emptyset
 - move(S3, b) = \emptyset
move(a,p) : Example 2

Following NFA
- $\Sigma = \{ a, b \}$

Move
- $\text{move}(S1, a) = \{ S2 \}$
- $\text{move}(S1, b) = \{ S3 \}$
- $\text{move}(S2, a) = \{ S3 \}$
- $\text{move}(S2, b) = \emptyset$
- $\text{move}(S3, a) = \emptyset$
- $\text{move}(S3, b) = \emptyset$

NFA \rightarrow DFA Reduction Algorithm

- Input NFA $\langle \Sigma, Q, q_0, F_n, \delta \rangle$, Output DFA $\langle \Sigma, R, r_0, F_d, \delta \rangle$
- Algorithm

 Let $r_0 = \varepsilon$-closure(q_0), add it to R // DFA start state

 While \exists an unmarked state $r \in R$

 Mark r // each state visited once

 For each $a \in \Sigma$

 Let $S = \{ s \mid q \in r \& \text{move}(q,a) = s \}$ // states reached via a

 Let $e = \varepsilon$-closure(S) // states reached via ε

 If $e \not\in R$

 Let $R = e \cup R$ // add e to R (unmarked)

 Let $\delta = \delta \cup \{ r, a, e \}$ // add transition $r \rightarrow e$

 Let $F_d = \{ r \mid \exists s \in r \text{ with } s \in F_n \}$ // final if include state in F_n
NFA → DFA Example 1

- Start = ε-closure(S1) = { {S1,S3} }
- R = { {S1,S3} }
- r ∈ R = {S1,S3}
- Move({S1,S3},a} = {S2}
 - e = ε-closure({S2}) = {S2}
 - R = R ∪ {S2} = { {S1,S3}, {S2} }
 - δ = δ ∪ {{S1,S3}, a, {S2}}
- Move({S1,S3},b} = Ø

NFA
S1 → a S2 → b S3

DFA
{1,3} → a {2}

NFA → DFA Example 1 (cont.)

- R = { {S1,S3}, {S2} }
- r ∈ R = {S2}
- Move({S2},a} = Ø
- Move({S2},b} = {S3}
 - e = ε-closure({S3}) = {S3}
 - R = R ∪ {S3} = { {S1,S3}, {S2}, {S3} }
 - δ = δ ∪ {{S2}, b, {S3}}

NFA
S1 → a S2 → b S3

DFA
{1,3} → a {2} → b {3}
NFA \rightarrow DFA Example 1 (cont.)

- $R = \{ \{S1, S3\}, \{S2\}, \{S3\} \}$
- $r \in R = \{S3\}$
- $\text{Move}(\{S3\}, a) = \emptyset$
- $\text{Move}(\{S3\}, b) = \emptyset$
- $F_d = \{\{S1, S3\}, \{S3\}\}$
 - Since $S3 \in F_n$
- Done!

NFA \rightarrow DFA Example 2

- NFA
- DFA

$R = \{ \{A\}, \{B, D\}, \{C, D\} \}$
NFA → DFA Example 3

\[R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \} \]

Equivalence of DFAs and NFAs

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from \(A\) to \(D\) in the original NFA
Equivalence of DFAs and NFAs (cont.)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape
Minimizing DFA: Hopcroft Reduction

Intuition
- Look for states that can be distinguished from each other
 - End up in different accept / non-accept state with identical input

Algorithm
- Construct initial partition
 - Accepting & non-accepting states
- Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on a lead to identical partition $P2$
 - Even though transitions on a lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P2\)
 - Transition on \(a\) from \(U\) lead to partition \(P3\)

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\}
 - Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
DFA Minimization Algorithm (1)

- **Input**: DFA \((\Sigma, Q, q_0, F_n, \delta)\), **Output**: DFA \((\Sigma, R, r_0, F_d, \delta)\)

- **Algorithm**

 Let \(p_0 = F_n, p_1 = Q - F\)
 // initial partitions = final, nonfinal states

 Let \(R = \{ p \mid p \in \{p_0, p_1\} \text{ and } p \neq \emptyset \}\), \(P = \emptyset\)
 // add \(p\) to \(R\) if nonempty

 While \(P \neq R\) do
 // while partitions changed on prev iteration

 Let \(P = R, R = \emptyset\)
 // \(P\) = prev partitions, \(R\) = current partitions

 For each \(p \in P\)
 // for each partition from previous iteration

 \(\{p_0, p_1\} = \text{split}(p, P)\)
 // split partition, if necessary

 \(R = R \cup \{ p \mid p \in \{p_0, p_1\} \text{ and } p \neq \emptyset \}\)
 // add \(p\) to \(R\) if nonempty

 \(r_0 = p \in R \text{ where } q_0 \in p\)
 // partition w/ starting state

 \(F_d = \{ p \mid p \in R \text{ and exists } s \in p \text{ such that } s \in F_n \}\)
 // partitions w/ final states

 \(\delta(p,c) = q \text{ when } \delta(s,c) = r \text{ where } s \in p \text{ and } r \in q\)
 // add transitions

DFA Minimization Algorithm (2)

- **Algorithm for** \(\text{split}(p, P)\)

 Choose some \(r \in p\), let \(q = p - \{r\}, m = \{\}\)
 // pick some state \(r\) in \(p\)

 For each \(s \in q\)
 // for each state in \(p\) except for \(r\)

 For each \(c \in \Sigma\)
 // for each symbol in alphabet

 If \(\delta(r,c) = q_0\) and \(\delta(s,c) = q_1\) and \(q_0\)'s = states reached for \(c\)

 there is no \(p_t \in P\) such that \(q_0 \in p_t\) and \(q_1 \in p_t\) then

 \(m = m \cup \{s\}\)
 // add \(s\) to \(m\) if \(q_0\)'s not in same partition

 Return \(p - m, m\)
 // \(m = \) states that behave differently than \(r\)

 // \(m\) may be \(\emptyset\) if all states behave the same

 // \(p - m = \) states that behave the same as \(r\)
Minimizing DFA: Example 1

- **DFA**

 - **Initial partitions**
 - Accept \{ R \} → P1
 - Reject \{ S, T \} → P2

 - **Split partition? → Not required, minimization done**
 - \(\text{move}(S,a) = T \rightarrow P2 \) - \(\text{move}(S,b) = R \rightarrow P1 \)
 - \(\text{move}(T,a) = T \rightarrow P2 \) - \(\text{move}(T,b) = R \rightarrow P1 \)

Minimizing DFA: Example 2

- **DFA**

 - **Initial partitions**
 - Accept \{ R \} → P1
 - Reject \{ S, T \} → P2

 - **Split partition? → Not required, minimization done**
 - \(\text{move}(S,a) = T \rightarrow P2 \) - \(\text{move}(S,b) = R \rightarrow P1 \)
 - \(\text{move}(T,a) = S \rightarrow P2 \) - \(\text{move}(T,b) = R \rightarrow P1 \)
Minimizing DFA: Example 3

- **DFA**
 - Initial partitions
 - Accept \(\{ R \} \) → P1 DFA already minimal
 - Reject \(\{ S, T \} \) → P2
 - Split partition? → Yes, different partitions for B
 - \(\text{move}(S,a) = T \) → P2
 - \(\text{move}(S,b) = T \) → P2
 - \(\text{move}(T,a) = T \) → P2
 - \(\text{move}(T,b) = R \) → P1

Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{a, b\} \)
Complement of DFA (cont.)

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.
Reducing DFAs to REs

General idea
- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA

Relating REs to DFAs and NFAs

Why do we want to convert between these?
- Can make it easier to express ideas
- Can be easier to implement
Implementing DFAs

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0':  cur_state = 0; break;
            case '1':  cur_state = 1; break;
            case '\n': printf("rejected\n"); return 0;
            default:   printf("rejected\n"); return 0;
        } break;
        case 1: switch (symbol) {
            case '0':  cur_state = 0; break;
            case '1':  cur_state = 1; break;
            case '\n': printf("accepted\n"); return 1;
            default:   printf("rejected\n"); return 0;
        } break;
        default: printf("unknown state; I'm confused\n");
    }
}
```

Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:
let \(q = q_0\)
while (there exists another symbol \(s\) of the input string)
 \(q := \delta(q, s)\);
if \(q \in F\) then
 accept
else reject

- \(q\) is just an integer
- Represent \(\delta\) using arrays or hash tables
- Represent \(F\) as a set
Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can't get much faster!
- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice
- So there's the initial overhead
 - But then processing strings is fast

Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_A, f_A, \delta_A)$, the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Practice

- Convert to a DFA

- Convert to an NFA and then to a DFA
 - $(0|1)^*11|0^*$
 - Strings of alternating 0 and 1
 - $aba^*|(ba|b)$

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - $RE \rightarrow NFA$
 - Concatenation, union, closure
 - $NFA \rightarrow DFA$
 - ε-closure & subset algorithm

- DFA
 - Minimization, complement
 - Implementation