CMSC 330: Organization of Programming Languages

Lambda Calculus

Programming Language Features

- Many features exist simply for convenience
 - Multi-argument functions
 - Use currying or tuples
 - foo (a, b, c)
 - Loops
 - Use recursion
 - while (a < b) ...
 - Side effects
 - Use functional programming
 - a := 1

- So what language features are really needed?
Turing Completeness

- Computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Programming Language Theory

- Come up with a “core” language
 - That’s as small as possible
 - But still Turing complete
- Helps illustrate important
 - Language features
 - Algorithms
- One solution
 - Lambda calculus
Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 (born in Washingon DC!)

- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics

- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell…

Lambda Expressions

- A lambda calculus expression is defined as

 \[e ::= x \quad \text{variable} \]
 \[\mid \lambda x.e \quad \text{function} \]
 \[\mid e e \quad \text{function application} \]

- \(\lambda x.e \) is like \(\text{fun } x \rightarrow e \) in OCaml

- That’s it! Nothing but higher-order functions
Three Conveniences

- Syntactic sugar for local declarations
 - \(\text{let x = e1 in e2} \) is short for \((\lambda x. e2) \ e1 \)

- Scope of \(\lambda \) extends as far right as possible
 - Subject to scope delimited by parentheses
 - \(\lambda x. \lambda y. x \ y \) is same as \(\lambda x. (\lambda y. (x \ y)) \)

- Function application is left-associative
 - \(x \ y \ z \) is \((x \ y) \ z \)
 - Same rule as OCaml

Lambda Calculus Semantics

- All we’ve got are functions
 - So all we can do is call them

- To evaluate \((\lambda x. e1) \ e2 \)
 - Evaluate \(e1 \) with \(x \) replaced by \(e2 \)

- This application is called \text{beta-reduction}
 - \((\lambda x. e1) \ e2 \to e1[x:=e2] \)
 - \(e1[x:=e2] \) is \(e1 \) with occurrences of \(x \) replaced by \(e2 \)
 - This operation is called \text{substitution}
 - Slightly different than the environments we saw for OCaml
 - Do syntactic substitutions to replace formals with actuals
 - Instead of using environment to map formals to actuals
 - \text{We allow reductions to occur anywhere in a term}
Beta Reduction Example

\[\lambda x.\lambda z.x \ z \ y \]
\[\rightarrow (\lambda x.(\lambda z.(x \ z))) \ y \]
\[\quad \text{since } \lambda \text{ extends to right} \]
\[\rightarrow (\lambda x.(\lambda z.(x \ z))) \ y \]
\[\quad \text{apply } (\lambda x.e_1) \ e_2 \rightarrow e_1[x:=e_2] \]
\[\quad \text{where } e_1 = \lambda z.(x \ z), \ e_2 = y \]
\[\rightarrow \lambda z.(y \ z) \]
\[\quad \text{final result} \]

Equivalent OCaml code

\[
\begin{align*}
&\text{• } (\text{fun } x \rightarrow (\text{fun } z \rightarrow (x \ z))) \ y \rightarrow \text{fun } z \rightarrow (y \ z)
\end{align*}
\]

Lambda Calculus Examples

\[(\lambda x.x) \ Z \rightarrow Z \]
\[(\lambda x.y) \ Z \rightarrow y \]
\[(\lambda x.x \ y) \ Z \rightarrow z \ y \]
\[\quad \text{• A function that applies its argument to } y \]
Lambda Calculus Examples (cont.)

- \((\lambda x. x \ y) (\lambda z. z) \rightarrow (\lambda z. z) \ y \rightarrow y\)
- \((\lambda x. \lambda y. x \ y) \ z \rightarrow \lambda y. z \ y\)
 - A curried function of two arguments
 - Applies its first argument to its second
- \((\lambda x. \lambda y. x \ y) (\lambda z. z) x \rightarrow (\lambda y. (\lambda z. z) y) x \rightarrow (\lambda z. z) x \rightarrow x x\)

Defining Substitution

- Use recursion on structure of terms
 - \(x[x:=e] = e\) // Replace \(x\) by \(e\)
 - \(y[x:=e] = y\) // \(y\) is different than \(x\), so no effect
 - \((e1 \ e2)[x:=e] = (e1[x:=e]) (e2[x:=e])\)
 // Substitute both parts of application
 - \((\lambda x. e')[x:=e] = \lambda x. e'\)
 - In \(\lambda x. e'\), the \(x\) is a parameter, and thus a local variable that is
different from other \(x\)'s.
 - So the substitution has no effect in this case, since the \(x\) being
substituted for is different from the parameter \(x\) that is in \(e'\)
 - \((\lambda y. e')[x:=e] = ?\)
 - The parameter \(y\) does not share the same name as \(x\), the
variable being substituted for
 - Is \(\lambda y. (e'[x:=e])\) correct?
Static Scoping & Alpha Conversion

- Lambda calculus uses static scoping

- Consider the following
 - \((\lambda x. (\lambda x.) x) \ z \rightarrow ?\)
 - The rightmost “x” refers to the second binding
 - This is a function that
 - Takes its argument and applies it to the identity function

- This function is “the same” as \((\lambda x. (\lambda y. y))\)
 - Renaming bound variables consistently is allowed
 - This is called alpha-renaming or alpha conversion
 - Ex. \(\lambda x.x = \lambda y.y = \lambda z.z\) \(\lambda y.\lambda x.y = \lambda z.\lambda x.z\)

Static Scoping (cont.)

- How about the following?
 - \((\lambda x.\lambda y.x \ y) \ y \rightarrow ?\)
 - When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\), as this violates static scoping
 - I.e., \((\lambda x.\lambda y.x \ y) \ y \neq \lambda y.y \ y\)

- Solution
 - \((\lambda x.\lambda y.x \ y)\) is “the same” as \((\lambda x.\lambda z.x \ z)\)
 - Due to alpha conversion
 - So change \((\lambda x.\lambda y.x \ y)\) \(y\) to \((\lambda x.\lambda z.x \ z)\) \(y\) first
 - Now \((\lambda x.\lambda z.x \ z) \ y \rightarrow \lambda z.y \ z\)
Completing the Definition of Substitution

- Recall: we need to define $\text{subst}(\lambda y.e', x:=e)$
 - We want to avoid capturing (free) occurrences of y in e
 - Solution: alpha-conversion!
 - Change y to a variable w that does not appear in e' or e
 (Such a w is called fresh)
 - Replace all occurrences of y in e' by w.
 - Then replace all occurrences of x in e' by e!

- Formally:
 $\text{subst}(\lambda y.e', x:=e) = \lambda w.\text{subst}(\text{subst}(e', y:=w), x:=e)$ (w is fresh)

Beta-Reduction, Again

- Whenever we do a step of beta reduction
 - $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$
 - We must alpha-convert variables as necessary
 - Usually performed implicitly (w/o showing conversion)

- Examples
 - $(\lambda x.\lambda y.x y) y = (\lambda x.\lambda z.x z) y \rightarrow \lambda z y z$ // $y \rightarrow z$
 - $(\lambda x (\lambda x)) z = (\lambda y. (\lambda x) y) z \rightarrow z (\lambda x) x$ // $x \rightarrow y$
 - $(\lambda x. (\lambda x)) z = (\lambda x. (\lambda y) y) z \rightarrow z (\lambda y) y$ // $x \rightarrow y$
Encodings

- The lambda calculus is Turing complete
 - Means we can encode any computation we want
 - If we’re sufficiently clever...

Examples
- Booleans
- Pairs
- Natural numbers & arithmetic
- Looping

Booleans

- Church’s encoding of mathematical logic
 - true = λx.λy.x
 - false = λx.λy.y
 - if a then b else c
 - Defined to be the λ expression: a b c

Examples
- if true then b else c → (λx.λy.x) b c → (λy.b) c → b
- if false then b else c → (λx.λy.y) b c → (λy.y) c → c
Booleans (cont.)

- Other Boolean operations
 - not = \(\lambda x.((x \text{ false}) \text{ true}) \)

 \(\text{not } x = \text{ if } x \text{ then false else true} \)

 \(\text{not true } \rightarrow (\lambda x.(x \text{ false}) \text{ true}) \text{ true } \rightarrow ((\text{true false}) \text{ true}) \rightarrow \text{ false} \)
 - and = \(\lambda x.\lambda y.((x \text{ y}) \text{ false}) \)

 \(\text{and } x \text{ y } = \text{ if } x \text{ then y else false} \)
 - or = \(\lambda x.\lambda y.((x \text{ true}) \text{ y}) \)

 \(\text{or } x \text{ y } = \text{ if } x \text{ then true else y} \)

- Given these operations
 - Can build up a logical inference system

Pairs

- Encoding of a pair \(a, b \)
 - \((a,b) = \lambda x.\text{if } x \text{ then a else b} \)
 - \(\text{fst } = \lambda f.f \text{ true} \)
 - \(\text{snd } = \lambda f.f \text{ false} \)

- Examples
 - \(\text{fst } (a,b) = (\lambda f.f \text{ true}) (\lambda x.\text{if } x \text{ then a else b}) \rightarrow \)

 \((\lambda x.\text{if } x \text{ then a else b}) \text{ true } \rightarrow \)

 \(\text{if true then a else b } \rightarrow \text{ a} \)
 - \(\text{snd } (a,b) = (\lambda f.f \text{ false}) (\lambda x.\text{if } x \text{ then a else b}) \rightarrow \)

 \((\lambda x.\text{if } x \text{ then a else b}) \text{ false } \rightarrow \)

 \(\text{if false then a else b } \rightarrow \text{ b} \)
Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - $0 = \lambda f.\lambda y.y$
 - $1 = \lambda f.\lambda y.f\ y$
 - $2 = \lambda f.\lambda y.f\ (f\ y)$
 - $3 = \lambda f.\lambda y.f\ (f\ (f\ y))$
 - i.e., $n = \lambda f.\lambda y.\text{<apply f n times to y>}$
 - Formally: $n+1 = \lambda f.\lambda y.f\ (n\ f\ y)$

(Alonzo Church, of course)

Operations On Church Numerals

- **Successor**
 - $\text{succ} = \lambda z.\lambda f.\lambda y.\text{f (z f y)}$
 - $0 = \lambda f.\lambda y.y$
 - $1 = \lambda f.\lambda y.f\ y$

- **Example**
 - $\text{succ}\ 0 =$
 - $(\lambda z.\lambda f.\lambda y.f\ (z\ f\ y))\ (\lambda f.\lambda y.y) \rightarrow$
 - $\lambda f.\lambda y.((\lambda f.\lambda y.y)\ f\ y) \rightarrow$
 - $\lambda f.\lambda y.((\lambda y.y)\ y) \rightarrow$ Since $(\lambda x.y)\ z \rightarrow y$
 - $\lambda f.\lambda y.f\ y$
 - $= 1$
Operations On Church Numerals (cont.)

- IsZero?
 - \(\text{iszero} = \lambda z. (\lambda y. \text{false}) \text{ true} \)
 - This is equivalent to \(\lambda z.((z\ (\lambda y. \text{false})) \text{ true}) \)

- Example
 - \(\text{iszero } 0 = \)
 - \((\lambda z. (\lambda y. \text{false}) \text{ true}) \ (\lambda f. \lambda y. y) \rightarrow \)
 - \((\lambda f. \lambda y. y) \ (\lambda y. \text{false}) \text{ true} \rightarrow \)
 - \((\lambda y. y) \text{ true} \rightarrow \) Since \((\lambda x. y) z \rightarrow y \)
 - \(\text{true} \rightarrow \)

Arithmetic Using Church Numerals

- If \(M \) and \(N \) are numbers (as \(\lambda \) expressions)
 - Can also encode various arithmetic operations

- Addition
 - \(M + N = \lambda x. \lambda y. ((M \ x)((N \ x) \ y)) \)
 - Equivalently: \(+ = \lambda M. \lambda N. \lambda x. \lambda y. ((M \ x)((N \ x) \ y)) \)
 - In prefix notation \((+ \ M \ N) \)

- Multiplication
 - \(M \times N = \lambda x. (M \ (N \ x)) \)
 - Equivalently: \(\times = \lambda M. \lambda N. \lambda x. (M \ (N \ x)) \)
 - In prefix notation \((* \ M \ N) \)
Arithmetic (cont.)

- Prove $1+1 = 2$
 - $1+1 = \lambda x.\lambda y.(1 \ x)((1 \ x) \ y) =$
 - $\lambda x.\lambda y.((\lambda x.\lambda y.\lambda x y) \ x)((\lambda x.\lambda y.\lambda x y) \ x) \ y) \rightarrow$
 - $\lambda x.\lambda y.((\lambda x.\lambda y.\lambda x y) \ x) \ y) \rightarrow$
 - $\lambda x.\lambda y.(\lambda y.\lambda x y) (((\lambda x.\lambda y.\lambda x y) \ x) \ y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda y.\lambda x y) \ y) \rightarrow$
 - $\lambda x.\lambda y.x (x y) = 2$
 - Many implicit alpha conversions

- With these definitions
 - Can build a theory of arithmetic

Looping & Recursion

- Define $D = \lambda x.x \ x$, then
 - $D \ D = (\lambda x.x \ x) \ (\lambda x.x \ x) \rightarrow (\lambda x.x \ x) \ (\lambda x.x \ x) = D \ D$

- So $D \ D$ is an infinite loop
 - In general, self application is how we get looping
The Fixpoint Combinator

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

Then

\[Y \, F = \]

\[(\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) \, F \rightarrow \]

\[(\lambda x. F (x x)) (\lambda x. F (x x)) \rightarrow \]

\[F ((\lambda x. F (x x)) (\lambda x. F (x x))) = F (Y \, F) \]

- \(Y \, F \) is a *fixed point* (aka “fixpoint”) of \(F \)
- Thus \(Y \, F = F (Y \, F) = F (F (Y \, F)) = \ldots \)
 - We can use \(Y \) to achieve recursion for \(F \)

Example

\[\text{fact} = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n-1)) \]

- The second argument to fact is the integer
- The first argument is the function to call in the body
 - We’ll use \(Y \) to make this recursively call fact

\[(Y \, \text{fact}) \, 1 = (\text{fact} (Y \, \text{fact})) \, 1 \]

\[\rightarrow \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times ((Y \, \text{fact}) \, 0) \]

\[\rightarrow 1 \times ((Y \, \text{fact}) \, 0) \]

\[\rightarrow 1 \times (\text{fact} (Y \, \text{fact}) \, 0) \]

\[\rightarrow 1 \times (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \times ((Y \, \text{fact}) \, (-1))) \]

\[\rightarrow 1 \times 1 \rightarrow 1 \]
Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in “real” language
 - Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 → thousands of function calls)
 - Pretty large (10000 + 1 → hundreds of lines of code)
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives

The Need For Types

- Consider the untyped lambda calculus
 - false = λx.λy.y
 - 0 = λx.λy.y
- Since everything is encoded as a function...
 - We can easily misuse terms...
 - false 0 → λy.y
 - if 0 then ...
 …because everything evaluates to some function
- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words
Simply-Typed Lambda Calculus

- $e ::= n \mid x \mid \lambda x:t.e \mid e\ e$
 - Added integers n as primitives
 - Need at least two distinct types (integer & function)…
 - …to have type errors
 - Functions now include the type of their argument

Simply-Typed Lambda Calculus (cont.)

- $t ::= \text{int} \mid t \rightarrow t$
 - int is the type of integers
 - $t1 \rightarrow t2$ is the type of a function
 - That takes arguments of type $t1$ and returns result of type $t2$
 - $t1$ is the domain and $t2$ is the range
 - Notice this is a recursive definition
 - So we can give types to higher-order functions
Summary

- Lambda calculus shows issues with
 - Scoping
 - Higher-order functions
 - Types

- Useful for understanding how languages work