Recall Architecture of Compilers, Interpreters

- Front end: syntax, (possibly) typechecking, other checks
- Back end: semantics (i.e. execution)
Specifying Syntax, Semantics

- We have seen how the syntax of a programming language may be specified precisely
 - Regular expressions
 - Context-free grammars

- What about formal methods for defining the semantics of a programming language?
 - I.e., what does a program mean / do?

Formal Semantics of a Prog. Lang.

- Mathematical description of all possible computations performed by programs written in that language

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Formal Semantics (cont.)

- Denotational semantics: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation

- Operational semantics: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation

- Axiomatic semantics
 - Describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs

This Course: Operational Semantics

- We will show how an operational semantics may be defined using a subset of OCaml

- Approach: use rules to define a relation

 \[E \Rightarrow \mathbf{v} \]

 - \(E \): expression in OCaml subset
 - \(\mathbf{v} \): value that results from evaluating \(E \)

- To begin with, need formal definitions of:
 - Set \(\text{Exp} \) of expressions
 - Set \(\text{Val} \) of values
Defining Exp

Recall: operational semantics defines what happens in backend

- Front end parses code into abstract syntax trees (ASTs)
- So inputs to backend are ASTs

How to define ASTs?

- Standard approach: using grammars!
- Idea: grammar defines abstract syntax (no parentheses, grouping constructs, etc.; grouping is implicit)

OCaml Abstract Syntax

\[
E ::= x \mid n \mid \text{true} \mid \text{false} \mid [] \\
\mid E \ op \ E \ (op \in \{+, -, '/', '*', '=' ,'<', '>', '::', etc\}) \\
\mid \text{l_op} \ E \ (\text{l_op} \in \{\text{hd}, \text{tl}\}) \\
\mid \text{if} \ E \ \text{then} \ E \ \text{else} \ E \\
\mid \text{fun} \ x \ \rightarrow \ E \ | \ E \ E \ | \text{let} \ x = E \ \text{in} \ E
\]

- \(x\) may be any identifier
- \(n\) is any numeral (digit sequence, with optional -).
- \text{true} and \text{false} stand for the two boolean constants
- \([]\) is the empty list

\(Exp = \) set of (type-correct) ASTs defined by grammar

- Note that the grammar is ambiguous
 - OK because not using grammar for parsing
 - But for defining the set of all syntactically legal terms
Values

- What can results be?
 - Integers
 - Booleans
 - Lists
 - Functions
- We will deal with first three initially

Formal Definition of Val

- Let
 - \(Z = \{\ldots, -1, 0, -1, \ldots\} \) be the (math) set of integers
 - \(B = \{\text{ff, tt}\} \) be the (math) set of booleans
 - nil be a distinguished value (empty list)
- Then Val is the smallest set such that
 - \(Z, B \subseteq \text{Val} \) and nil \(\in \text{Val} \)
 - If \(v_1, v_2 \in \text{Val} \) then \(\langle v_1, v_2 \rangle \in \text{Val} \)
- “Smallest set”?
 - Every integer and boolean is a value, as is nil
 - Any pair of values is also a value
Operations on Val

- Basic operations will be assumed
 - \(+\), \(-\), \(*\), \(/\), \(=\), \(<\), \(\leq\), etc.
- Not all operations are applicable to all values!
 - \(tt + ff\) is undefined
 - So is \(1 + nil\)
- A key purpose of type checking is to prevent these undefined operations from occurring during execution

Implementing Exp, Val in OCaml

\[
E ::= x \mid n \mid true \mid false \mid [] \mid if E then E else E \\
| \quad fun x = E \mid E E \mid let x = E in E \ldots
\]

\[
\text{type} \quad \text{ast} = \\
\text{Id of string} \\
| \text{Num of int} \\
| \text{Bool of bool} \\
| \text{Nil} \\
| \text{If of ast * ast * ast} \\
| \text{Fun of string * ast} \\
| \text{App of ast * ast} \\
| \text{Let of string * ast * ast} \\
| \ldots
\]

\[
\text{type} \quad \text{value} = \\
\text{Val_Num of int} \\
| \text{Val_Bool of bool} \\
| \text{Val_Nil} \\
| \text{Val_Pair of value *} \\
| \text{value} \\
| \ldots
\]
Defining Evaluation (⇒)

- Approach is inductive and uses rules:
 - Idea: if the conditions \(H_1 \ldots H_n \) (“hypotheses”) are true, the rule says the condition \(C \) (“conclusion”) below the line follows
 - Hypotheses, conclusion are statements about ⇒; hypotheses involve subexpressions of conclusions
 - If \(n=0 \) (no hypotheses) then the conclusion is automatically true and is called an axiom
 - A “-” may be written in place of the hypothesis list in this case
 - Terminology: statements one is trying to prove are called judgments

- This method is often called “Structural Operational Semantics (SOS)” or “Natural Semantics”

SOS Rules: Basic Values

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Each basic entity evaluates to its corresponding value
- Note: axioms!
SOS Rules: Built-in Functions

- How about built-in functions (+, -, etc.)?
 - In OCaml, type-checking done in front end
 - Thus, ASTs coming to back end are type-correct
 - So we assume Exp contains type-correct ASTs
- We will use relevant operations on value side

SOS Rules: Built-in Functions

- For arithmetic, comparison operations, etc.

 \[
 \begin{array}{c}
 E_1 \Rightarrow v_1 \quad E_2 \Rightarrow v_2 \\
 E_1 \text{ op } E_2 \Rightarrow v_1 \text{ op } v_2 \\
 \end{array}
 \]

- For ::

 \[
 \begin{array}{c}
 E_1 \Rightarrow v_1 \quad E_2 \Rightarrow v_2 \\
 E_1 \text{ :: } E_2 \Rightarrow \langle v_1, v_2 \rangle \\
 \end{array}
 \]

- Rules are recursive
- :: is implemented using pairing
 - Type system guarantees result is list
Trees of Semantic Rules

- When we apply rules to an expression, we actually get a tree
 - Corresponds to the recursive evaluation procedure
 - For example: \((3 + 4) + 5\)

\[
\begin{align*}
3 & \Rightarrow 3 \\
4 & \Rightarrow 4 \\
(3 + 4) & \Rightarrow 7 \\
5 & \Rightarrow 5 \\
(3 + 4) + 5 & \Rightarrow 12
\end{align*}
\]

Rules for \(\text{hd}, \text{tl}\)

- \(\text{hd } E \Rightarrow v_1\)
- \(\text{tl } E \Rightarrow v_2\)

- Note that the rules only apply if \(E\) evaluates to a pair of values
- Nothing in this rule requires the pair to correspond to a list
- The OCaml type system ensures this
Error Cases

<table>
<thead>
<tr>
<th>E₁ ⇒ v₁</th>
<th>E₂ ⇒ v₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₁ + E₂ ⇒ v₁ + v₂</td>
<td></td>
</tr>
</tbody>
</table>

- What if \(v₁, v₂ \) aren’t integers?
 - E.g., what if we write \(\text{false + true} \)?
 - It can be parsed in OCaml, but type checker will disallow it from being passed to back end
- In a language with dynamic strong typing (e.g. Ruby), rules include explicit type checks

<table>
<thead>
<tr>
<th>E₁ ⇒ v₁, v₁ ∈ (\mathbb{Z})</th>
<th>E₂ ⇒ v₂, v₂ ∈ (\mathbb{Z})</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₁ + E₂ ⇒ v₁ + v₂</td>
<td></td>
</tr>
</tbody>
</table>

- Convention: if no rules are applicable to an expression, its result is an error

Rules for If

<table>
<thead>
<tr>
<th>E₁ ⇒ tt</th>
<th>E₂ ⇒ v₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>if E₁ then E₂ else E₃ ⇒ v₂</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E₁ ⇒ ff</th>
<th>E₃ ⇒ v₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>if E₁ then E₂ else E₃ ⇒ v₃</td>
<td></td>
</tr>
</tbody>
</table>

- Notice that only one branch is evaluated
- E.g.
 - if true then 3 else 4 ⇒ 3
 - if false then 3 else 4 ⇒ 4
Using Rules to Define Evaluation

- $E \Rightarrow v$ holds if and only if a proof can be built
 - Proofs start with axioms, involve applications of rules whose hypotheses have been proved
 - No proof means $E \not\Rightarrow v$
- Proofs can be constructed in a goal-directed fashion
- Thus, function $\text{eval (E)} = \{v \mid E \Rightarrow v\}$
 - Determinism of semantics implies at most one element for any E

Rules for Identifiers

- The previous rules handle expressions that involve constants (e.g. 1, true) and operations
- What about variables?
 - These are allowed as expressions
 - How do we evaluate them?
- In a program, variables must be declared
 - The values that are part of the declaration are used to evaluate later occurrences of the variables
 - We will use environments to “hold” these declarations in our semantics
Environments

- Mathematically, an environment is a partial function from identifiers to values
 - If A is an environment, and id is an identifier, then $A(id)$ can either be …
 - … a value (intuition: the variable has been declared)
 - … or undefined (intuition: variable has not been declared)
- An environment can also be thought of as a table
 - If A is
 \[
 \begin{array}{c|c}
 \text{Id} & \text{Val} \\
 \hline
 x & 0 \\
 y & \text{ff}
 \end{array}
 \]
 - then $A(x)$ is 0, $A(y)$ is ff, and $A(z)$ is undefined

Notation, Operations on Environments

- is the empty environment (undefined for all ids)
- $x:v$ is the environment that maps x to v and is undefined for all other ids
- If A and A' are environments then A, A' is the environment defined as follows
 \[
 (A, A')(id) = \begin{cases}
 A'(id) & \text{if } A'(id) \text{ defined} \\
 A(id) & \text{if } A'(id) \text{ undefined but } A(id) \text{ defined} \\
 \text{undefined} & \text{otherwise}
 \end{cases}
 \]
- Idea: A' “overwrites” definitions in A
- For brevity, can write \cdot, A as just A
Semantics with Environments

To give a semantics for identifiers, we will extend judgments from

\[E \Rightarrow v \]

to

\[A; E \Rightarrow v \]

where \(A \) is an environment

- Idea: \(A \) is used to give values to the identifiers in \(E \)
- \(A \) can be thought of as containing all the declarations made up to \(E \)

Existing rules can be modified by inserting \(A \) everywhere in the judgments

Existing Rules Have To Be Modified

- E.g.

 \[
 \begin{array}{c}
 E_1 \Rightarrow v_1 \\
 E_2 \Rightarrow v_2 \\
 E_1 + E_2 \Rightarrow v_1 + v_2
 \end{array}
 \]

- becomes

 \[
 \begin{array}{c}
 A; E_1 \Rightarrow v_1 \\
 A; E_2 \Rightarrow v_2 \\
 A; E_1 + E_2 \Rightarrow v_1 + v_2
 \end{array}
 \]

- These modifications can be done systematically
Rule for Identifiers

- x is an identifier
- To determine its value v “look it up” in A!

\[
\begin{array}{c}
A(x) = v \\
A; x \Rightarrow v
\end{array}
\]

Rule for Let binding

- We evaluate the first expression, and then evaluate the second expression in an environment extended to include a binding for x

\[
\begin{array}{c}
A; E_1 \Rightarrow v_1 \\
A, x : v_1; E_2 \Rightarrow v_2
\end{array}
\]

\[
A; \text{let } x = E_1 \text{ in } E_2 \Rightarrow v_2
\]
Function Values

- So far our semantics handles:
 - Constants
 - Built-in operations
 - Identifiers

- What about function definitions?
 - Recall form: \texttt{fun x \rightarrow E}
 - To evaluate these expressions we need to add closures to our set of values

Closures

- ... are what OCaml function expressions evaluate to
- A closure consists of:
 - Parameter (id)
 - Body (expression)
 - Environment (used to evaluate free variables in body)

- Formal extension to Val:
 - if \(x \) is an id, \(E \) is an expression, and \(A \) is an environment
 - ... then \((A, \lambda x. E) \in \text{Val}\)
Rule for Function Definitions

\[
\begin{array}{c|c}
\text{A; fun} & \text{x } \rightarrow \text{E} \\
\hline
\text{(A, } \lambda x . \text{E)}
\end{array}
\]

- The expression evaluates to a closure
 - The id and body in the closure come from the expression
 - The environment is the one in effect when the expression is evaluated
- This will be used to implement static scope

Evaluating Function Application

- How do we evaluate a function application expression of the form \(E_1 E_2 \)?
 - Static scope
 - Call by value
- Strategy
 - Evaluate \(E_1 \), producing \(v_1 \)
 - If \(v_1 \) is indeed a function (i.e. closure) then
 - Evaluate \(E_2 \), producing \(v_2 \)
 - Set the parameter of closure \(v_1 \) equal to \(v_2 \)
 - Evaluate the body under this binding of the parameter
 - Remember that non-parameter ids in the body must be interpreted using the closure!
Rule for Function Application

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A; E_1 \Rightarrow (A'; \lambda x.E))</td>
<td>1st hypothesis: (E_1) evaluates to a closure</td>
</tr>
<tr>
<td>(A; E_2 \Rightarrow v_2)</td>
<td>2nd hypothesis: (E_2) produces a value (call by value!)</td>
</tr>
<tr>
<td>(A', x:v_2; E \Rightarrow v)</td>
<td>3rd hypothesis: Body (E) in modified closure environment produces a value</td>
</tr>
<tr>
<td>(A; E_1 E_2 \Rightarrow v)</td>
<td>This last value is the result of the application</td>
</tr>
</tbody>
</table>

Example: \((\text{fun } x \rightarrow x + 3) \ 4\)

\[
\begin{align*}
\ast; x:4; x & \Rightarrow 4 \quad \ast; x:4; 3 \Rightarrow 3 \\
\ast; \text{fun } x \rightarrow x + 3 & \Rightarrow (\ast, \lambda x.x + 3) \\
\ast; 4 & \Rightarrow 4 \\
\ast; x:4; x + 3 & \Rightarrow 7 \\
\ast; (\text{fun } x \rightarrow x + 3) 4 & \Rightarrow 7
\end{align*}
\]
Example: \((\text{fun } x \rightarrow (\text{fun } y \rightarrow x + y)) \ 3 \ 4\)

\[
\begin{align*}
\text{•}; \ (\text{fun } x \rightarrow (\text{fun } y \rightarrow x + y)) & \Rightarrow (\text{•}, \lambda x.(\text{fun } y \rightarrow x + y)) \\
\text{•}; \ 3 & \Rightarrow 3 \\
x:3; \ (\text{fun } y \rightarrow x + y) & \Rightarrow (x:3, \lambda y.(x + y)) \\
\text{•}; \ (\text{fun } x \rightarrow (\text{fun } y \rightarrow x + y)) \ 3 & \Rightarrow (x:3, \lambda y.(x + y))
\end{align*}
\]

Let <previous> = \((\text{fun } x \rightarrow (\text{fun } y \rightarrow x + y)) \ 3\)

Example (cont.)

\[
\begin{align*}
\text{•}; x:3, y:4; \ x & \Rightarrow 3 \quad \text{•}; x:3, y:4; \ y & \Rightarrow 4 \\
\text{•}; \ <\text{previous}> & \Rightarrow (x:3, \lambda y.(x + y)) \\
\text{•}; \ 4 & \Rightarrow 4 \\
x:3, y:4; \ (x + y) & \Rightarrow 7 \\
\text{•}; \ (<\text{previous}> \ 4) & \Rightarrow 7
\end{align*}
\]
Dynamic scoping

- The previous rule for functions implements static scoping, since it implements closures
- We could easily implement dynamic scoping

\[
\begin{align*}
A; E_1 &\Rightarrow (A', \lambda x. E) \\
A; E_2 &\Rightarrow v_2 \\
A, x: v_2; &E \Rightarrow v \\
A; E_1 E_2 &\Rightarrow v
\end{align*}
\]

- The only difference is to use the current environment \(A \), not the environment \(A' \)
 - Easy to see the origins of the dynamic scoping bug!

Practice Examples

- Give a derivation that proves the following (where \(\bullet \) is the empty environment)
 - \(\bullet; \text{let } x = 5 \text{ in } let \ y = 7 \text{ in } x+y \Rightarrow 12 \)
 - \(\bullet; \text{let } x = \text{let } x = 5 \text{ in } x+2 \text{ in } x+2 \Rightarrow 9 \)
 - \(\bullet; \text{let } f = \text{fun } x \rightarrow x+5 \text{ in } f \ 7 \Rightarrow 12 \)
 - \(\bullet; \text{let } y = 5 \text{ in let } f = \text{fun } x \rightarrow x+y \text{ in let } y = 6 \text{ in } f \ 7 \Rightarrow 12 \)
- Using the dynamic scoping version of the function application rule, prove
 - \(\bullet; \text{let } y = 5 \text{ in let } f = \text{fun } x \rightarrow x+y \text{ in let } y = 6 \text{ in } f \ 7 \Rightarrow 13 \)