Introduction

- That’s it for the basics of Ruby
 - If you need other material for your project, come to office hours or check out the documentation

- Next up: How do regular expressions (REs) really work?
 - Mixture of a very practical tool (string matching with REs) and some nice theory
 - A great computer science result

A Few Questions About REs

- What does a regular expression represent?
 - Just a set of strings

- What are the basic components of REs?
 - E.g., we saw that e+ is the same as ee*

- How are REs implemented?
 - We’ll see how to build a structure to parse REs

Definition: Alphabet

- An **alphabet** is a **finite** set of symbols
 - Usually denoted Σ

- Example alphabets:
 - Binary: $\Sigma = \{0,1\}$
 - Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
 - Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$
Definition: String

A string is a finite sequence of symbols from \(\Sigma \)
- \(\varepsilon \) is the empty string ("\" in Ruby)
- \(|s|\) is the length of string \(s \)
 - \(|\text{Hello}| = 5\)
 - \(|\varepsilon| = 0\)
- Note
 - \(\emptyset \) is the empty set (with 0 elements)
 - \(\emptyset \neq \{ \varepsilon \} \neq \varepsilon \)

Example strings:
- \(0101 \in \Sigma = \{0, 1\} \) (binary)
- \(0101 \in \Sigma = \text{decimal} \)
- \(0101 \in \Sigma = \text{alphanumeric} \)

Definition: String concatenation

String concatenation is indicated by juxtaposition
- If \(s_1 = \text{super} \) and \(s_2 = \text{hero} \), then \(s_1 s_2 = \text{superhero} \)
- Sometimes also written \(s_1 \cdot s_2 \)
- For any string \(s \), we have \(s \varepsilon = \varepsilon s = s \)
- You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:
 - If \(s_1 = \text{super} \in \Sigma_1 = \{s,u,p,e,r\} \) and \(s_2 = \text{hero} \in \Sigma_2 = \{h,e,r,o\} \), then \(s_1 s_2 = \text{superhero} \in \Sigma_3 = \{e,h,o,p,r,s,u\} \)

Definition: Language

A language \(L \) is a set of strings over an alphabet

Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)
- Give an example element of this language: \((123) 456-7890 \)
- Are all strings over the alphabet in the language? \(\text{No} \)
- Is there a Ruby regular expression for this language?
 - \(/\(\d(3,3)\)\ / \d(3,3)\-\d(4,4)/ \)

Example: The set of all strings over \(\Sigma \)
- Often written \(\Sigma^* \)

Definition: Language (cont.)

Example: The set of strings of length 0 over the alphabet \(\Sigma = \{a, b, c\} \)
- \(L = \{s \mid s \in \Sigma^* \text{ and } |s| = 0\} = \{\varepsilon\} \neq \emptyset \)

Example: The set of all valid Ruby programs
- Is there a Ruby regular expression for this language?
 - \(\text{No} \). Matching (an arbitrary number of) brackets so that they are balanced is impossible using REs \(\{ \{ \ldots \} \} \)

Can REs represent all possible languages?
- The answer turns out to be no!
- The languages represented by regular expressions are called, appropriately, the regular languages
Operations on Languages

- Let Σ be an alphabet and let L_1, L_2 be languages over Σ.
- Concatenation $L_1 L_2$ is defined as $\{xy | x \in L_1$ and $y \in L_2\}$.
- Union is defined as $\{x | x \in L_1$ or $x \in L_2\}$.
- Kleene closure is defined as $\{x | \varepsilon$ or $x \in L$ or $x \in LL$ or $x \in LLL$ or $\ldots\}$.

Definition: Regular Expressions

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as:

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each element $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

Constants

Definition: Regular Expressions (cont.)

- Let A and B be regular expressions denoting languages L_A and L_B, respectively.

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$(A</td>
<td>B)$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

Regular Expressions Denote Languages

- By applying operations on constants:
 - Generates a set of strings (i.e., a language).
 - Examples:
 - $a \rightarrow \{\text{"a"}\}$
 - $a|b \rightarrow \{\text{"a"}\} \cup \{\text{"b"}\} = \{\text{"a"}, \text{"b"}\}$
 - $a^* \rightarrow \{\varepsilon\} \cup \{\text{"a"}\} \cup \{\text{"aa"}\} \cup \ldots = \{\varepsilon, \text{"a"}, \text{"aa"}, \ldots\}$

- If $s \in$ language generated by a RE r, we say that r accepts, describes, or recognizes string s.

Operations
Precedence

Order in which operators are applied
- In arithmetic
 - Multiplication $\times >$ addition $+$
 - $2 \times 3 + 4 = (2 \times 3) + 4 = 10$
- In regular expressions
 - Kleene closure $^* >$ concatenation $>$ union $|$
 - $ab|c = (a \ b) \ | \ c = \{\text{“ab”, “c”}\}$
 - $ab^* = a (b^*) = \{\text{“a”, “ab”, “abb”…}\}$
 - $a|b^* = a \ | \ (b^*) = \{\text{“a”, “”, “b”, “bb”, “bbb”…}\}$
- Can change order using parentheses $()$
 - E.g., $a(b|c), (ab)^*, (ab)^*$

Regular Languages

The languages that can be described using regular expressions are the regular languages or regular sets
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - reads the same backward or forward
 - $\{a^n b^n \mid n > 0\}$ ($a^n = \text{sequence of n a’s}$)
 - Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools

Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition
- `/Ruby/` – concatenation of single-character REs
- `/Ruby|Regular)/` – union
- `/Ruby)^*/` – Kleene closure
- `/Ruby)+/` – same as (Ruby)(Ruby)*
- `/Ruby)?/` – same as (el(Ruby)) // is ε
- `/[a-z]/` – same as (a|b|c|...|z)
- `/[^0-9]/` – same as (a|b|c|...) for a,b,c,... $\in \Sigma - \{0..9\}$
- `^`, `$` – correspond to extra characters in alphabet

Implementing Regular Expressions

We can implement a regular expression by turning it into a finite automaton
- A “machine” for recognizing a regular language
Finite Automata

- Machine starts in start or initial state
- Repeat until the end of the string is reached
 - Scan the next symbol s of the string
 - Take transition edge labeled with s
- String is accepted if automaton is in final state when end of string reached

Finite Automata: States

- Start state
 - State with incoming transition from no other state
 - Can have only 1 start state
- Final states
 - States with double circle
 - Can have 0 or more final states
 - Any state, including the start state, can be final

Finite Automaton: Example 1

```
0 0 1 0 1 1
```
accepted

Finite Automaton: Example 2

```
0 0 1 0 1 0
```
not accepted
What Language is This?

- All strings over \{0, 1\} that end in 1
- What is a regular expression for this language?
 \((0|1)^*1\)

Finite Automaton: Example 3

Finite Automaton: Example 3 (cont.)

- What language does this DFA accept?
 \(a^*b^*c^*\)
- S3 is a dead state – a nonfinal state with no transition to another state

Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?

- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit
Finite Automaton: Example 4

\[a^*b^*c^* \] again, so DFAs are not unique

Finite Automaton: Example 5

- **S0 =** “Haven’t seen anything yet” OR “seen zero or more b’s” OR “Last symbol seen was a b”
- **S1 =** “Last symbol seen was an a”
- **S2 =** “Last two symbols seen were ab”
- **S3 =** “Last three symbols seen were abb”

Practice

Give the English descriptions and the DFA or regular expression of the following languages:

- \(((0|1)(0|1)(0|1)(0|1)(0|1))^*\)
 - All strings with length a multiple of 5
- \((01)^*|(10)^*|(01)^*0|(10)^*1\)
 - All alternating binary strings

Practice

- Give the regular expressions and finite automata for the following languages
 - You and your neighbors’ names
 - All protein-coding DNA strings (including only ATCG and appearing in multiples of 3)
 - All binary strings containing an even length substring of all 1’s
 - All binary strings containing exactly two 1’s
 - All binary strings that start and end with the same number
Review

- **Languages**
 - Sets of strings
 - Operations on languages
- **Regular expressions**
 - Constants
 - Operators
 - Precedence
- **Finite automata**
 - States
 - Transitions
 - Accept strings