
CMSC 330: Organization of
Programming Languages

Logic Programming with Prolog

CMSC 330 1
2

Background

  1972, University of Aix-Marseille

  Original goal: Natural language processing

  At first, just an interpreter written in Algol
•  Compiler created at Univ. of Edinburgh

CMSC 330

3

More Information On Prolog

  Various tutorials
available online

  Links on webpage

  We will use SWI Prolog
http://www.swi-prolog.org/

 swipl, on Grace

CMSC 330 4

Logic Programming

  At a high level, logic programs model the
relationship between “objects”
1.  Programmer specifies relationships at a high level
2.  Language builds a database
3.  Programmer then queries this database
4.  Language searches for answers

CMSC 330

5

Features of Prolog

  Declarative
•  Specify what goals you want to prove, not how to

prove them (mostly)
  Rule based
  Dynamically typed
  Several built-in datatypes

•  Lists, numbers, records, … but no functions

  Several other logic programming languages
•  Datalog is simpler; CLP and λProlog more feature-ful
•  Erlang borrows some features from Prolog

CMSC 330 6

A Small Prolog Program – Things to Notice

/* A small Prolog program */

female(alice).
male(bob).
male(charlie).
father(bob, charlie).
mother(alice, charlie).

% “X is a son of Y”
son(X, Y) :- father(Y, X), male(X).
son(X, Y) :- mother(Y, X), male(X).

Use /* */ for comments, or % for 1-liners

Lowercase logically
terminates

Uppercase denotes
variables

Period ends statements

Program consists
of facts and rules

7

Running Prolog (Interactive Mode)
Navigating location and loading program at top level

?- working_directory(C,C).

C = ’c:/windows/system32/’.

?- working_directory(C,’c:/Users/me/desktop/p6’).

C = ’c:/Users/me/desktop/’.

?- [’01-basics.pl’].

% 01-basics.pl compiled 0.00 sec, 17 clauses

true.

?- make.

true.

Load file 01-basics.pl

CMSC 330

Reload modified files; replace rules

Find current directory

Set directory

8

Running Prolog (Interactive Mode)

?- listing(son). ?- listing(son).

son(X, Y) :- son(X, Y) :-

 father(Y, X), father(Y, X),

 male(X). male(X).

son(X, Y) :-

 mother(Y, X),

 male(X).

true.

?- son(X,Y).

X = charlie,

Y = bob;

X = charlie,

Y = alice. Y = alice.

Multiple answers Multiple answers

CMSC 330

User types ; to request
User types ; to request additional answer

User types return to
User types return to

List rules for son

Style

blond(X) :-
 father(Father, X),
 blond(Father), % father is blond
 mother(Mother, X),
 blond(Mother). % and mother is blond

CMSC 330 9

One predicate per line

Inline comments with % can be useful
Descriptive variable names

Outline

  Syntax, terms, examples
  Unification
  Arithmetic / evaluation
  Programming conventions
  Goal evaluation

•  Search tree, clause tree

  Lists
  Built-in operators
  Cut, negation

CMSC 330 10

Prolog Syntax and Terminology

  Terms
•  Atoms: begin with a lowercase letter

 horse underscores_ok numbers2
•  Numbers

 123 -234 -12e-4
•  Variables: begin with uppercase or _

 X Biggest_Animal _the_biggest1 _
•  Compound terms: functor(arguments)

 bigger(horse, duck)
 bigger(X, duck)
 f(a, g(X, _), Y, _)

No blank spaces between functor and (arguments)
CMSC 330 11

“don’t care” variables

Prolog Syntax and Terminology (cont.)

  Clauses
•  Facts: define predicates, terminated by a period

 bigger(horse, duck).
 bigger(duck, gnat).

Intuitively: “this particular relationship is true”
•  Rules: Head :- Body

 is_bigger(X,Y) :- bigger(X,Y).
 is_bigger(X,Y) :- bigger(X,Z), is_bigger(Z,Y).

Intuitively: “Head if Body”, or “Head is true if each of
the subgoals can be shown to be true”

  A program is a sequence of clauses

CMSC 330 12

Prolog Syntax and Terminology (cont.)

  Queries
•  To “run a program” is to submit queries to the

interpreter
•  Same structure as the body of a rule

!  Predicates separated by commas, ended with a period

•  Prolog tries to determine whether or not the
predicates are true

?- is_bigger(horse, duck).
?- is_bigger(horse, X).

“Does there exist a substitution for X such that
is_bigger(horse,X)?”

CMSC 330 13

Unification – The Sine Qua Non of Prolog

  Two terms unify if and only if
•  They are identical

 ?- gnat = gnat.
 true.

•  They can be made identical by substituting variables
 ?- is_bigger(X, gnat) = is_bigger(horse, gnat).

 X = horse.

 ?- pred(X, 2, 2) = pred(1, Y, X)
 false

 ?- pred(X, 2, 2) = pred(1, Y, _)
 X = 1,
 Y = 2.

CMSC 330 14

This is the substitution: what X must be
for the two terms to be identical.

Sometimes there are multiple
possible substitutions; Prolog can
be asked to enumerate them all

Without which, nothing

The = Operator

  For unification (matching)
  ?- 9 = 9.

true.
?- 7 + 2 = 9.
false.

  Why? Because these terms do not match
•  7+2 is a compound term (e.g., +(7,2))

  Prolog does not evaluate either side of =
•  Before trying to match

CMSC 330 15

The is Operator

  For arithmetic operations
  �LHS is RHS�

•  First evaluate the RHS (and RHS only!) to value V
•  Then match: LHS = V

  Examples
 ?- 9 is 7+2. ?- 7+2 is 9.

 true. false.

 ?- X = 7+2. ?- X is 7+2.
 X = 7+2. X = 9.

CMSC 330 16

No Variable Assignment

  = and is operators do not perform assignment
  Example

•  foo(...,X) :- ... X = 1,... % true only if X = 1
•  foo(...,X) :- ... X = 1, ..., X = 2, ... % always fails
•  foo(...,X) :- ... X is 1,... % true only if X = 1
•  foo(...,X) :- ... X is 1, ..., X is 2, ... % always fails

CMSC 330 17

X can’t be unified with 1 & 2 at the same time

Function Parameter & Return Value

  Code example

increment(X,Y) :-
 Y is X+1.

?- increment(1,Z).
Z = 2.
?- increment(1,2).
true.
?- increment(Z,2).
ERROR: incr/2: Arguments are not sufficiently instantiated

CMSC 330 18

Parameter
Return value

Query
Result

Can�t evaluate X+1
since X is not yet
instantiated to int

Function Parameter & Return Value

  Code example

addN(X,N,Y) :-
 Y is X+N.

?- addN(1,2,Z).
Z = 3.

CMSC 330 19

Parameters
Return value

Query
Result

Recursion

  Code example
addN(X,0,X).
addN(X,N,Y) :-

 X1 is X+1,
 N1 is N-1,
 addN(X1,N1,Y).

?- addN(1,2,Z).
Z = 3.

CMSC 330 20

Base case

Inductive step

Recursive call

Factorial

  Code
factorial(0,1).
factorial(N,F) :-

 N > 0,
 N1 is N-1,
 factorial(N1,F1),
 F is N*F1.

CMSC 330 21

Tail Recursive Factorial w/ Accumulator

  Code
tail_factorial(0,F,F).
tail_factorial(N,A,F) :-
 N > 0,
 A1 is N*A,
 N1 is N -1,
 tail_factorial(N1,A1,F).

CMSC 330 22

AND and OR

  And
•  To implement X &&Y (use , in body of clause)
•  Example

Z :- X,Y.

  OR
•  To implement X || Y (use two clauses)
•  Example

Z :- X.
Z :- Y.

CMSC 330 23

Goal Execution

  When submitting a query, we ask Prolog to
substitute variables as necessary to make it true

  Prolog performs goal execution to find a solution
•  Start with the goal
•  Try to unify the head of a rule with the current goal
•  The rule hypotheses become subgoals

!  Substitutions from one subgoal constrain solutions to the next

•  If it reaches a dead end, it backtracks
!  Tries a different rule

•  When it can backtrack no further, it reports false
  More advanced topics later – cuts, negation, etc.

CMSC 330 24

Goal Execution (cont.)

  Consider the following:
•  “All men are mortal”

 mortal(X) :- man(X).
•  “Socrates is a man”

 man(socrates).
•  “Is Socrates mortal?”

 ?- mortal(socrates).
 true.

  How did Prolog infer
this?

CMSC 330 25

1.  Sets mortal(socrates) as the
initial goal

2.  Sees if it unifies with the
head of any clause:
mortal(socrates) = mortal(X).

3.  man(socrates) becomes the
new goal (since X=socrates)

4.  Recursively scans through
all clauses, backtracking if
needed …

Clause Tree

  Clause tree
•  Shows (recursive) evaluation of all clauses
•  Shows value (instance) of variable for each clause
•  Clause tree is true if all leaves are true

  Factorial example

CMSC 330 26

factorial(0,1).
factorial(N,F) :-

 N > 0,
 N1 is N-1,
 factorial(N1,F1),
 F is N*F1.

Tracing

  trace lets you step through a goal’s execution
•  notrace turns it off

CMSC 330 27

?- trace.
true.

[trace] ?- my_last(X, [1,2,3]).
 Call: (6) my_last(_G2148, [1, 2, 3]) ? creep
 Call: (7) my_last(_G2148, [2, 3]) ? creep
 Call: (8) my_last(_G2148, [3]) ? creep
 Exit: (8) my_last(3, [3]) ? creep
 Exit: (7) my_last(3, [2, 3]) ? creep
 Exit: (6) my_last(3, [1, 2, 3]) ? creep
X = 3

my_last(X, [X]).

my_last(X, [_|T]) :-

 my_last(X, T).

1

2
2
2
1

Goal Execution – Backtracking

  Clauses are tried in order
  If clause fails, try next clause, if available
  Example

jedi(luke).
jedi(yoda).
sith(vader).
sith(maul).
fight(X,Y) :- jedi(X), sith(Y).

CMSC 330 28

?- fight(A,B).
A=luke,
B=vader;
A=luke,
B=maul;
A=yoda,
B=vader;
A=yoda,
B=maul.

Prolog (Search / Proof / Execution) Tree

CMSC 330 29

?- fight(A,B).

?- jedi(X),sith(Y).

?- jedi(luke),sith(Y).

?- sith(vader). ?- sith(maul).

?- jedi(yoda),sith(Y).

?- sith(vader). ?- sith(maul).

A=X,B=Y

X=luke X=yoda

Y=vader Y=maul Y=vader Y=maul

Lists In Prolog

  [a, b, 1, ‘hi’, [X, 2]]
  But really represented as compound terms

•  [] is an atom
•  [a, b, c] is represented as .(a, .(b, .(c, [])))

  Matching over lists
 ?- [X, 1, Z] = [a, _, 17]
 X = a,
 Z = 17.

CMSC 330 30

List Deconstruction

  Syntactically related to Ocaml: [H|T] like h::t
 ?- [Head | Tail] = [a,b,c].
 Head = a,
 Tail = [b, c].

 ?- [1,2,3,4] = [_, X | _].
 X = 2

  This is sufficient for defining complex predicates
  Let’s define concat(L1, L2, C)

 ?- concat([a,b,c], [d,e,f], X).
 X = [a,b,c,d,e,f].

CMSC 330 31

Example: Concatenating Lists

  To program this, we define the “rules” of
concatenation
•  If L1 is empty, then C = L2

 concat([], L2, L2).
•  Prepending a new element to L1 prepends it to C, so

long as C is the concatenation of L1 with some L2

 concat([E | L1], L2, [E | C]) :-
 concat(L1, L2, C).

  … and we’re done

CMSC 330 32

Why Is The Return Value An Argument?

  Now we can ask what inputs lead to an output

?- concat(X, Y, [a,b,c]).
X = [],
Y = [a, b, c] ;
X = [a],
Y = [b, c] ;
X = [a, b],
Y = [c] ;
X = [a, b, c],
Y = [] ;

CMSC 330 33

User types ; to request
additional answers

More Syntax: Built-in Predicates

  Equality (a.k.a. unification)
 X = Y f(1,X,2) = f(Y,3,_)

  fail and true
  “Consulting” (loading) programs

 ?- consult(‘file.pl’) ?- [‘file.pl’]
  Output/Input

 ?- write(‘Hello world’), nl ?- read(X).
  (Dynamic) type checking

 ?- atom(elephant) ?- atom(Elephant)
  help

CMSC 330 34

The == Operator

  For identity comparisons
  X == Y

•  Returns true if and only if X and Y are identical

  Examples
 ?- 9 == 9. ?- 9 == 7+2.
 true. false.
 ?- X == 9. ?- X == Y.
 False. false.
 ?- X == X. ?- 7+2 == 7+2.
 true. true.

CMSC 330 35

The =:= Operator

  For arithmetic operations
  �LHS =:= RHS�

•  Evaluate the LHS to value V1 (Error if not possible)
•  Evaluate the RHS to value V2 (Error if not possible)
•  Then match: V1 = V2

  Examples
 ?- 7+2 =:= 9. ?- 7+2 =:= 3+6.

 true. true.

 ?- X =:= 9. ?- X =:= 7+2
Error: =:=/2: Arguments are not sufficiently instantiated

CMSC 330 36

Example – Towers of Hanoi

  Problem
•  Move full stack of disks to another peg
•  Can only move top disk in stack
•  Only allowed to place disk on top of larger disk

Example – Towers of Hanoi

  To move a stack of n disks from peg X to Y
•  Base case

!  If n = 1, transfer disk from X to Y
•  Recursive step

1.  Move top n-1 disks from X to 3rd peg
2.  Move bottom disk from X to Y
3.  Move top n-1 disks from 3rd peg to Y

Iterative algorithm would take much longer to describe!

Towers of Hanoi

  Code
move(1,X,Y,_) :-
 write('Move top disk from '), write(X),
 write(' to '), write(Y), nl.
move(N,X,Y,Z) :-
 N>1,
 M is N-1,
 move(M,X,Z,Y),
 move(1,X,Y,_),
 move(M,Z,Y,X).

CMSC 330 39

Prolog Terminology
  A query, goal, or term where variables do not

occur is called ground; else it’s nonground
•  foo(a,b) is ground; bar(X) is nonground

  A substitution ! is a partial map from variables is a partial map from variables
to terms where domain(!) ∩ range(!) = �) ∩ range(!) = �) = �
•  Variables are terms, so a substitution can map

variables to other variables, but not to themselves
  A is an instance of B if there is a substitution

such that A = B!
  C is a common instance of A and B if it is an

instance of A and an instance of B
CMSC 330 40

The substitution ! applied to B

Prolog’s Algorithm Solve()

CMSC 330 41

Solve(goal G, program P, substitution !) =) =
 Suppose G is A1,…,An. Choose goal A1.
 For each clause A :- B1,B2,…,Bk in P,

•  if !1 is the mgu of A and A1! then then
!  If Solve({B1,…,Bk,,A2,…,An}, P, !·!1) = some !� then return !�
!  (else it has failed, so we continue the for loop)

•  (else unification has failed, so try another rule)
 If loop exits return fail
 Output: ! s.t. G! can be deduced from P, or fail s.t. G! can be deduced from P, or fail can be deduced from P, or fail

Chooses goals in order

Implements backtracking

Starts as empty

Most
General
Unifier

! : a.k.a. “cut”

  When a ! is reached, it succeeds and commits
Prolog to all the choices made since the parent
goal was unified with the head of the clause the
cut occurs in
•  Suppose we have clause C which is

A :- B1,…,Bk,!,…Bn.
•  If the current goal unifies with A, and B1,…,Bk further

succeed, the program is committed to the choice of C
for the goal.
!  If any Bi for i > k fail, backtracking only goes as far as the cut.
!  If the cut is reached when backtracking, the goal fails

CMSC 330 42

Cut

  Limits backtracking to predicates to right of cut
  Example

jedi(luke).
jedi(yoda).
sith(vader).
sith(maul).
fight2(X,Y) :- jedi(X), !, sith(Y).
fight3(X,Y) :- jedi(X), sith(Y), !.

CMSC 330 43

?- fight2(A,B).
A=luke,
B=vader;
A=luke,
B=maul.
?- fight3(A,B).
A=luke,
B=vader.

Prolog Search Tree Limited By Cut

CMSC 330 44

?- fight2(A,B).

?- jedi(X),!,sith(Y).

?- jedi(luke),!,sith(Y).

?- sith(vader). ?- sith(maul).

?- jedi(yoda),sith(Y).

?- sith(vader). ?- sith(maul).

A=X,B=Y

X=luke X=yoda

Y=vader Y=maul Y=vader Y=maul

What Exactly Is Cut Doing?

CMSC 330 45

merge([X|Xs], [Y|Ys], [X|Zs]) :-
 X < Y, !, merge(Xs, [Y|Ys], Zs).

merge([X|Xs], [Y|Ys], [X,Y|Zs]) :-
 X =:= Y, !, merge(Xs,Ys,Zs).

merge([X|Xs], [Y|Ys], [Y|Zs]) :-
 X > Y, !, merge([X|Xs],Ys,Zs).

merge(Xs, [], Xs) :- !.

merge([], Ys, Ys) :- !.

Prunes all clauses below it
Prunes alternative
solutions to its left
Does not affect the
goals to its right

Note: Cut only affects this call
to merge. Does not affect
backtracking of functions
calling merge, or later recursive
call to merge past cut

Why Use Cuts?

  Save time and space, or eliminate redundancy
•  Prune useless branches in the search tree
•  If sure these branches will not lead to solutions
•  These are green cuts

  Guide to the search to a different solution
•  Change the meaning of the program
•  Intentionally returning only subset of possible solutions
•  These are red cuts

CMSC 330 46

Negation As Failure

  Cut may be used implement negation (not)
  Example

not(X) :- call(X), !, fail.
not(X).

  If X succeeds, then the cut is reached,
committing it; fail causes the whole thing to fail

  If X fails, then the second rule is reached, and
the overall goal succeeds.
•  FYI, X here refers to an arbitrary goal
•  Effect of not depends crucially on rule order

CMSC 330 47

Not

  Not is tricky to use
•  Does not mean �not true�
•  Just means �not provable

at this time�
  Example

jedi(luke).
jedi(vader).
sith(vader).

CMSC 330 48

?- not(sith(luke)).
true.
?- not(sith(vader)).
false.
?- not(jedi(leia)).
true.
?- not(sith(leia)).
true.

Cannot prove either
jedi(leia) or sith(leia)
are true, so not()
returns true

Not (cont.)

  Not is tricky to use
•  Does not mean �not true�
•  Just means �not provable

at this time�
  Example

jedi(luke).
jedi(vader).
sith(vader).

CMSC 330 49

?- not(sith(X)).
false.

 Huh? Why not return X=luke?

Because not(sith(X)) does not mean
“Can prove sith(X) is false for some X”

Instead, it means “Cannot prove sith(X)
is true for some X”. So X=vader causes
not(sith(X)) to fail and return false

not(sith(X)) :- sith(X), !, fail.
not(sith(X)).

Not – Search Tree

CMSC 330 50

?- not(sith(X)).

?- not(sith(vader)).

X=vader

fail

not(sith(X)) :- sith(X), !, fail.
not(sith(X)).

jedi(luke).
jedi(vader).
sith(vader).

Will search for
all X such that
sith(X) is true.

Not (cont.)

  Ordering of clauses matters
  Example

jedi(luke).
jedi(vader).
sith(vader).
true_jedi1(X) :-

 jedi(X), not(sith(X)).
true_jedi2(X) :-

 not(sith(X)), jedi(X).

CMSC 330 51

?- true_jedi1(luke).
true.
?- true_jedi1(X).
X=luke.
?- true_jedi2(luke).
true.
?- true_jedi2(X).
false.

X=vader causes not(sith(X)) to fail;
Will not backtrack to X=luke, since
sith(luke) is not a fact

True_jedi2 – Search Tree

CMSC 330 52

?- not(sith(X)), jedi(X).

?- not(sith(vader)), jedi(vader).

X=vader

fail

not(sith(X)) :- sith(X), !, fail.
not(sith(X)).

jedi(luke).
jedi(luke).
sith(vader).

Will search for
all X such that
sith(X) is true.

?- true_jedi2(X).

not(sith(vader)) fails

Not and \=

  Built-in operators
•  \+ is not
•  X \= Y is same as not(X=Y)
•  X \== Y is same as not(X==Y)

  So be careful using \=
•  Ordering of clauses matters
•  Try to ensure operands of \= are instantiated

CMSC 330 53

Example Using \=

  Example
jedi(luke).
jedi(yoda).
help2(X,Y) :- jedi(X), jedi(Y), X \= Y.
help3(X,Y) :- jedi(X), X \= Y, jedi(Y).
help4(X,Y) :- X \= Y, jedi(X), jedi(Y).

CMSC 330 54

?- help2(X,Y).
X=luke,
Y=yoda;
X=yoda,
Y=luke.
?- help3(X,luke).
X=yoda.
?- help3(X,Y).
false.

After selecting X,
can choose Y=X
and fail X \= Y.

Help3 – Search Tree

CMSC 330 55

?- help3(X,Y).

?- jedi(X), X \= Y, jedi(Y).

?- jedi(luke), luke \= Y, jedi(Y).

?- luke\=luke

?- jedi(yoda), yoda \= Y, jedi(Y).

?- yoda\=yoda

X=luke X=yoda

Y=luke Y=yoda

jedi(luke).
jedi(yoda).

help3(X,Y) :-
 jedi(X),
 X \= Y,
 jedi(Y).

luke=luke,!,fail

not(X=Y) :- X=Y, !, fail.
not(X=Y).

yoda=yoda,!,fail

Using \=

  In fact, given X \= Y
•  will always fail if X or Y are not both instantiated

X \= a // fails for X=a
a \= Y // fails for Y=a
X \= Y // fails for X=Y

CMSC 330 56

Example Using \=

  Example
jedi(luke).
jedi(yoda).
help2(X,Y) :- jedi(X), jedi(Y), X \= Y.
help3(X,Y) :- jedi(X), X \= Y, jedi(Y).
help4(X,Y) :- X \= Y, jedi(X), jedi(Y).

CMSC 330 57

?- help4(X,luke).
false.
?- help4(yoda,luke).
true.

Built-in List Predicates

  length(List,Length)
 ?- length([a, b, [1,2,3]], Length).
 Length = 3.

  member(Elem,List)
 ?- member(duey, [huey, duey, luey]).
 true.
 ?- member(X, [huey, duey, luey]).
 X = huey; X = duey; X = luey.

  append(List1,List2,Result)
 ?- append([duey], [huey, duey, luey], X).
 X = [duey, huey, duey, luey].

CMSC 330 58

Built-in Predicates

  sort(List,SortedList)
 ?- sort([2,1,3], R).
 R= [1,2,3].

findall(Elem,Predicate,ResultList)
 ?- findall(E,member(E,[huey, duey, luey]),R).
 R=[huey,duey,luey].

setof(Elem,Predicate,ResultSortedList)
 ?- setof(E,member(E,[huey, duey, luey]),R).
 R=[duey,huey,luey].

  See documentation for more
•  http://www.swi-prolog.org/pldoc/man?section=builtin

CMSC 330 59

Prolog Summary

  General purpose logic programming language
•  Associated with AI, computational linguistics
•  Also used for theorem proving, expert systems

  Declarative programming
•  Specify facts & relationships between facts (rules)
•  Run program as queries over these specifications

  Natural support for
•  Searching within set of constraints
•  Backtracking

CMSC 330 60

