CMSC 330: Organization of
Programming Languages

Logic Programming with Prolog

CMSC 330 1

More Information On Prolog

o] » Various tutorials
- , available online
~ ., Links on webpage
Programming
in Prolog
Using the 50 Standard » We will use SWI Prolog

http://www.swi-prolog.org/
swipl, on Grace

CMSC 330

Background

» 1972, University of Aix-Marseille

» Original goal: Natural language processing

» At first, just an interpreter written in Algol
* Compiler created at Univ. of Edinburgh

CMSC 330

Logic Programming

» At a high level, logic programs model the
relationship between “objects”

1.

2.
3.
4.

CMSC 330

Programmer specifies relationships at a high level
Language builds a database

Programmer then queries this database
Language searches for answers

Features of Prolog A Small Prolog Program — Things to Notice

» Declarative Use /* */ for comments, or % for 1-liners
» Specify what goals you want to prove, not how to Period ends statements
prove them (mostly) o,
» Rule based Lowercase logically ~ /* & small proleg program */
» Dynamically typed terminates comaTetalice) .
male (bob) .
» Several built-in datatypes male (charlie) .
. . father (bob, charlie).
* Lists, numbers, records, ... but no functions Program consists/ mother (alice, charlie).
» Several other logic programming languages of facts and rules \ % “X is a son of ¥”
* Datalog is simpler; CLP and AProlog more feature-ful son(X, Y) :- father(Y, X), male(X).
sonLX, Y) :- mother (Y, X), male(X).
* Erlang borrows some features from Prolog Uppercase denotes/
oSG 330 . variables .
Running Prolog (Interactive Mode) Running Prolog (Interactive Mode)

Navigating location and loading program at top level
?- listing(sen). <—— |ist rules for son

?- working_directory(c,c). +—— Find current directory son(X, Y) :-

C = ’'c:/windows/system32/’ . father (Y, X),
male (X) .

?- working directory(C,’c:/Users/me/desktop/p6’). +— Set directory son(X, Y) :-

C = ’'c:/Users/me/desktop/’ . mother (Y, X),
male (X) .

?- [’0Ol-basics.pl’]. «—— Load file 01-basics.pl true.

% Ol-basics.pl compiled 0.00 sec, 17 clauses e=m=emm USEr typeS ; to request

true. baditiymEsanswequest
7 Multipl
e e 7 ultiple answers
?- make. +<—— Reload modified files; replace rules Y = bob;" = P
true. X = charlie,} ____________________ User types return to
Y = alice. > User types return to

CMSC 330 7 8

Style

One predicate per line

blond(X) :z—

father (Father, X),

blond (Father) , % father is blond
mother (Mother, X),
blond (Mother) . % and mother is blond

1

Descriptive variable names
Inline comments with % can be useful

CMSC 330 9

Prolog Syntax and Terminology

» Terms

* Atoms: begin with a lowercase letter
horse underscores ok numbers2

* Numbers
123 -234 -12e-4
* Variables: begin with uppercase or _ “don't care” variables

X Biggest_ Animal _the biggest1 @

* Compound terms: functor(arguments)
bigger(horse, duck)
bigger(X, duck)
fla, 9(X,), Y,)
No blank spaces between functor and (arguments)

CMSC 330 1"

Outline

» Syntax, terms, examples
» Unification

» Arithmetic / evaluation

» Programming conventions

» Goal evaluation
e Search tree, clause tree

» Lists
» Built-in operators
» Cut, negation

CMSC 330 10

Prolog Syntax and Terminology (cont.)

» Clauses

* Facts: define predicates, terminated by a period
bigger(horse, duck).
bigger(duck, gnat).
Intuitively: “this particular relationship is true”
* Rules: Head :- Body
is_bigger(X,Y) :- bigger(X,Y).
is_bigger(X,Y) :- bigger(X,Z2), is_bigger(Z,Y).
Intuitively: “Head if Body”, or “Head is true if each of
the subgoals can be shown to be true”

» A program is a sequence of clauses

CMSC 330 12

Prolog Syntax and Terminology (cont.)

» Queries
* To “run a program” is to submit queries to the
interpreter
» Same structure as the body of a rule
» Predicates separated by commas, ended with a period

* Prolog tries to determine whether or not the
predicates are true

?- is_bigger(horse, duck).
?- is_bigger(horse, X).

“Does there exist a substitution for X such that
is_bigger(horse,X)?”

CMSC 330

The = Operator

» For unification (matching)
» 7-9=0.
true.
?-7+2=09.
false.
» Why? Because these terms do not match
* 7+2is a compound term (e.g., +(7,2))
» Prolog does not evaluate either side of =
* Before trying to match

CMSC 330

Without which, nothing
|
Unification — The Sine Qua Non 'of Prolog

» Two terms unify if and only if

* They are identical
?- gnat = gnat.
true.

* They can be made identical by substituting variables
?- is_bigger(X, gnat) = is_bigger(horse, gnat).
X = horse. This is the substitution: what X must be
for the two terms to be identical.
?- pred(X, 2, 2) = pred(1, Y, X)
false

possible substitutions; Prolog can

?-pred(X, 2, 2) = pred(1,Y,) Sometimes there are multiple

X=1
Y=2 be asked to enumerate them all

CMSC 330 14

The is Operator

» For arithmetic operations

» “LHS is RHS”
* First evaluate the RHS (and RHS only!) to value V
* Then match: LHS =V

» Examples
?-9is 7+2. ?-7+2is 9.
true. false.
?-X=T7+2. ?- Xis 7+2.
X =7+2. X=09.

CMSC 330 16

No Variable Assignment

» = and is operators do not perform assignment

» Example
* foo(...,.X) - ... X=1,... % true only if X =1
e foo(...,.X):-... X=1,..,X=2,... % always fails
e foo(...,X) :-... Xis 1,... % true only if X =1
* foo(...,X) :- ... Xis 1, ..., Xis 2, ... % always fails

X can’t be unified with 1 & 2 at the same time

CMSC 330 17

Function Parameter & Return Value

Function Parameter & Return Value

» Code example

J— - Parameters
/,:;_::35:"_' ___________________________ Return value

Vv v’

addN(X,N,Y) :-
Y is X+N.
?-addN(1,2,Z). <«—— Query
Z=3. +— Result
CMSC 330 19

» Code example

o eememem=m===mm== - Parameter
P Return value
S
increment(X,Y) :-
Y is X+1.
?-increment(1,Z). «—— Query
Z=2. +— Result
?-increment(1,2). . Can’ t evaluate X+1
,,,,,,, since X is not yet
true.

instantiated to int
?- increment(Z,2).

ERROR: incr/2: Arguments are not sufficiently instantiated
CMSC 330 18

Recursion

» Code example
addN(X,0,X). +«——— Base case
addN(X,N,Y) - «————|nductive step
X1 is X+1,
N1 is N-1,
addN(X1,N1)Y). «—— Recursive call

2- addN(1,2,2).
Z=3.

CMSC 330 20

Factorial

Tail Recursive Factorial w/ Accumulator

» Code
factorial(0,1).
factorial(N,F) :-

» Code
tail_factorial(0,F,F).
tail_factorial(N,A,F) :-

N >0, N >0,
N1 is N-1, A1is N*A,
factorial(N1,F1), N1is N -1,
Fis N*F1. tail_factorial(N1,A1,F).
CMSC 330 21 CMSC 330 22
AND and OR Goal Execution
» And » When submitting a query, we ask Prolog to
 To implement X &&Y (use , in body of clause) substitute variables as necessary to make it true
* Example » Prolog performs goal execution to find a solution
Z:=XY. * Start with the goal
» OR * Try to unify the head of a rule with the current goal
* To implement X || Y (use two clauses) * The rule hypotheses become subgoals
* Example > Substitutions from one subgoal constrain solutions to the next
Z:-X « |f it reaches a dead end, it backtracks
Z:-Y.

CMSC 330

> Tries a different rule
* When it can backtrack no further, it reports false

» More advanced topics later — cuts, negation, etc.

23 CMSC 330 24

Goal Execution (cont.)

» Consider the following: 1. Sets mortal(socrates) as the
* “All men are mortal” initial goal
mortal(X) :- man(X). 2. Sees if it unifies with the

« “Socrates is a man” head of any clause:

man(socrates).

« “Is Socrates mortal?” 3. man(socratgs) becomes the
?- mortal(socrates). new goal (since X=socrates)
true. 4. Recursively scans through
» How did Prolog infer ﬁigifes’ backtracking if
this?
CMSC 330 25
Tracing

» trace lets you step through a goal’s execution
* notrace turns it off

my_last(X, [X]). ?- trace.
true.

fy

my_last(X, [_|T]) :-
2 my_last(X, T).

[trace] ?- my_last(X, [1,2,3]).
Q Call: (6) my_last(_G2148, [1, 2, 3]) ? creep
Q Call: (7) my_last(_G2148, [2, 3]) ? creep
a Call: (8) my_last(_G2148, [3]) ? creep
Exit: (8) my_last(3, [3]) ? creep
Exit: (7) my_last(3, [2, 3]) ? creep
Exit: (6) my_last(3, [1, 2, 3]) ? creep

X=3

6
.
8
8
7
6

CMSC 330 27

Clause Tree

mortal(socrates) = mortal(X).

» Clause tree

* Shows (recursive) evaluation of all clauses

* Shows value (instance) of variable for each clause
* Clause tree is true if all leaves are true

» Factorial example

factorial(0,1).
factorial(N,F) :-
N >0,
N1 is N-1,
factorial(N1,F1),
Fis N*F1.

CMSC 330

factorial(3,6)

%\

3=0 2is3-1 factorial(2,2) 6is3*%2

2>0 1lis2-1 factorial(1,1) 2is2*1

| T

1>0 0is1-1 factorial(0,1) 1is1*1

true
26

Goal Execution — Backtracking

» Clauses are tried in order
» If clause fails, try next clause, if available

» Example ?- fight(A,B).
jedi(luke). A=luke,
jedi(yoda). B=vader;
sith(vader). A=luke,
sith(maul). B=maul;
fight(X,Y) :- jedi(X), sith(Y). A=yoda,

B=vader;
A=yoda,
B=maul.

CMSC 330

28

Prolog (Search / Proof / Execution) Tree

2- fight(A,B).

A=X,B=Y
[2- jedi(X) sith(Y). |

X=luke X=yoda

[2- jedi(yoda),sith(Y). |

[2- jedi(luke),sith(Y). |

Y=vader Y=maul Y=vader Y=maul

Lists In Prolog

[?- sith(vader).] [?- sith(maul).] [?- sith(vader).][?- sith(maul).]

CMSC 330 29

List Deconstruction

» Syntactically related to Ocaml: [H|T] like h::t
?- [Head | Tail] = [a,b,c].
Head = a,
Tail = [b, cJ.

?-01,234]1=[_ X]_]
X=2
» This is sufficient for defining complex predicates

» Let’s define concat(L1, L2, C)

?- concat([a,b,c], [d,e,f], X).
X =[a,b,c,d,ef].

CMSC 330 31

» [a, b, 1, °hi’, [X, 2]]

» But really represented as compound terms
* []is an atom
* [a, b, c] is represented as .(a, .(b, .(c, [])))

» Matching over lists
?2-1X,1,Z]=[a, _, 17]
X=a,

Z=17.

CMSC 330 30

Example: Concatenating Lists

» To program this, we define the “rules” of
concatenation

* If L1 is empty, then C = L2
concat([], L2, L2).

* Prepending a new element to L1 prepends it to C, so
long as C is the concatenation of L1 with some L2

concat([E | L1],L2,[E | C]) :-
concat(L1, L2, C).

» ... and we’re done

CMSC 330 32

Why Is The Return Value An Argument?

» Now we can ask what inputs lead to an output

?- concat(X, Y, [a,b,c]).
(X =11,

LY =[a, b, ¢];
[X = [a],
LY =[b, c];
X = [a, b],
Ly=[a;
_'X =Ja, b,]
LY =[1;

CMSC 330 33

User types ; to request
additional answers

The == Operator

» For identity comparisons

» X==Y
* Returns true if and only if X and Y are identical
» Examples
?-9==0. ?-9==T7+2.
true. false.
?-X==09. ?-X==Y.
False. false.
?2- X=X ?-7+2 ==T+2.
true. true.
CMSC 330 35

More Syntax: Built-in Predicates

Equality (a.k.a. unification)
X=Y f(1,X,2)=1Y,3,)

» fail and true
“Consulting” (loading) programs

?- consult(*file.pl’) ?- [file.pl']
Output/Input

v

v

v

?- write(‘Hello world’), nl ?- read(X).
» (Dynamic) type checking
?- atom(elephant) ?- atom(Elephant)
» help
CMSC 330 34

The =:= Operator

» For arithmetic operations

» “LHS =:= RHS”
* Evaluate the LHS to value V1 (Error if not possible)
* Evaluate the RHS to value V2 (Error if not possible)
* Then match: V1 =V2

» Examples
?-7+2==0. ?-7+2 =:= 3+6.
true. true.
?-X==09. ?-X==7+2

Error: =:=/2: Arguments are not sufficiently instantiated

CMSC 330 36

Example — Towers of Hanoi Example — Towers of Hanoi

» Problem » To move a stack of n disks from peg Xto Y
* Move full stack of disks to another peg * Base case
 Can only move top disk in stack > Ifn =1, transfer disk from X to Y
* Only allowed to pl j top of larger disk * Recursive step

1. Move top n-1 disks from X to 3 peg
2. Move bottom disk from X to Y
3. Move top n-1 disks from 3 peg to Y

Iterative algorithm would take much longer to describe!

Towers of Hanoi Prolog Terminology
. Code » A query, goal, or term where variables do not
move(1.X.Y,) - occur is called ground; else it's nonground
write('Move top disk from "), write(X), * foo(a,b) is ground; bar(X) is nonground
write(' to '), write(Y), nl. » A substitution 6 is a partial map from variables
move(N,X,Y,Z) :- to terms where domain(6) N range(6) = 2
N>1, * Variables are terms, so a substitution can map
M is N-1, variables to other variables, but not to themselves
move(M,X,Z,Y), » Ais an instance of B if there is a substitution
move(1,X,Y,), such that A = Bé H The substitution # applied to B ‘
move(M,Z,Y,X). » Cis acommon instance of Aand B ifitis an

instance of A and an instance of B

CMSC 330 39 CMSC 330 40

Prolog’s Algorithm Solve()

Starts as empty

o
Solve(goal G, program P, substitution 6) =

»Suppose Gis A,,...,A,. Choose goal A,
»For each clause A :- B,,B,,....B, in P,

* if 6, is the mgu of A and A6 then

‘ Chooses goals in order

Most > olve({B,,...,.B,,A,,...,A }, P, 0:0,) = some 6’ then return 6’
General . - .
Unifier > (else it has failed, so we continue the for loop)

* (else unification has failed, so try anotherr?uli)

»If loop exits return fail

‘ Implements backtracking ‘

»Output: 6 s.t. GO can be deduced from P, or fail

CMSC 330

Cut

41

» Limits backtracking to predicates to right of cut

» Example 2- fight2(A,B).
jedi(luke). A=luke,
jedi(yoda). B=vader;
sith(vader). A=luke,
sith(maul). B=maul.
fight2(X,Y) :- jedi(X), !, sith(Y). ?- fight3(A,B).
fight3(X,Y) :- jedi(X), sith(Y), !. A=luke,

B=vader.

CMSC 330

43

l: a.k.a. “cut’

» When a ! is reached, it succeeds and commits
Prolog to all the choices made since the parent
goal was unified with the head of the clause the

cut occurs in

* Suppose we have clause C which is

A :-B1,...,Bk,!,...Bn.

* If the current goal unifies with A, and B1,...,Bk further
succeed, the program is committed to the choice of C

for the goal.

> If any Bi for i > k fail, backtracking only goes as far as the cut.
> If the cut is reached when backtracking, the goal fails

CMSC 330

42

Prolog Search Tree Limited By Cut

[2- fight2(A,B). |

A=X,B=Y

[2- jedi(X)

Lsith(Y). |

X=luke

[2- jedi(luke),! sith(Y). |

Y=vader Y=maul

X=yoda
| 2- jedi(yoda),sith(Y). |

Y=vader Y=maul

[?- sith(vader).] [?- sith(maul).

—

[

?- sith(vader).][?- sith(maul).]

CMSC 330

44

What Exactly Is Cut Doing?

merge([X!f -
. I) merge(Xs, [Y|Ys], Zs).
Prunes all clauses below it ge(Xs, [YIYs])l

Prunes alternative , , X\ YUZs)) :-
solutions to its left ' ;

Why Use Cuts?

» Save time and space, or eliminate redundancy
* Prune useless branches in the search tree
* |f sure these branches will not lead to solutions
* These are green cuts

Does not affect the , :
goals to its right s ([XIXs],Ys,Zs). » Guide to the search to a different solution

* Change the meaning of the program

¢ Intentionally returning only subset of possible solutions

* These are red cuts

Note: Cut only affects this call Merge(Xs, [, Xs) - L.
to merge. Does not affect
backtracking of functions
calling merge, or later recursive
call to merge past cut

CMSC 330 45 CMSC 330 46

erge([], Ys, Ys) :- |.

Negation As Failure Not
» Cut may be used implement negation (not) » Not is tricky to use ?- not(sith(luke)).
» Example * Does not mean “not true” true.
not(X) :- call(X), !, fail. * Just means “not provable ?- not(sith(vader)).
o at this time” false
not(X). Example ? .t(j di(leia))
> /- not(eaiela)).
» If X succeeds, then the cut is reached, jedi(luke). frue.

committing it; fail causes the whole thing to fail
» |f X fails, then the second rule is reached, and

the overall goal succeeds.

* FYI, X here refers to an arbitrary goal

» Effect of not depends crucially on rule order

CMSC 330 47

jedi(vader). ?- not(sith(leia)).
sith(vader). 4 true.
Cannot prove either

jedi(leia) or sith(leia)
are true, so not()

returns true
CMSC 330 48

Not (cont.)

» Not is tricky to use ?- not(sith(X)).

* Does not mean “not true” false.
* Just means “not provable
at this time”
Huh? Why not return X=luke?
» Example
jedi(luke). Because not(sith(X)) does not mean
jedi(vader). “Can prove sith(X) is false for some X”
sith(vader). not(sith(X)) :- sith(X), !, fail.
not(sith(X)).
Instead, it means “Cannot prove sith(X)
is true for some X”. So X=vader causes
MG 330 not(sith(X)) to fail and return false "
Not (cont.)
» Ordering of clauses matters ?- true_jedi1(luke).
» Example true.
jedi(luke). ?- true_jedi1(X).
jedi(vader). X=luke.
sith(vader). ?- true_jedi2(luke).
true_jedi1(X) :- true.
jedi(X), not(sith(X)). ?- true_jedi2(X).
true_jedi2(X) :- false.
not(sith(X)), jedi(X). /

X=vader causes not(sith(X)) to fail;

Will not backtrack to X=luke, since
CMSC 330 sith(luke) is not a fact 51

Not — Search Tree

jedi(luke). not(sith(X)) :- sith(X), !, fail.

jedi(vader). not(sith(X)).
sith(vader).

Will search for
all X such that
sith(X) is true.

[2- not(sith(X)). |

—> X=vader

[?- not(sith(vader)).]

fail

CMSC 330

True_jedi2 — Search Tree

50

jedi(luke). not(sith(X)) :- sith(X), !, fail.
jedi(luke). not(sith(X)).
sith(vader).

[2- true_jedi2(X). |

Will search for [?' not(sith(X)), jedi(X).]
all X such that —— x=vader
sith(X) is true. [

2- not(sith(vader)), jedi(vader). |

/

not(sith(vader)) fails

fail

CMSC 330

52

Not and \=

» Built-in operators
* \+is not
* X\=Y is same as not(X=Y)
* X\==Y is same as not(X==Y)
» So be careful using \=
* Ordering of clauses matters
* Try to ensure operands of \= are instantiated

CMSC 330

Help3 — Search Tree

53

Example Using \=

» Example ?- help2(X,Y).
jedi(luke). flukde'
.. =yoda;
jedi(yoda). X=yoda,

help2(X,Y) :- jedi(X), jedi(Y), X\= Y. veuke.

help3(X,Y) :- jedi(X), X \= Y, jedi(Y). - help3(Xluke).

help4(X,Y) :- X\=Y, jedi(X), jedi(Y). X=yoda.
?- help3(X,Y).
false.
After selecting X, /
can choose Y=X
and fail X\=Y.

CMSC 330

Using \=

54

nOt(X=Y) - X=Y, !, fail. ?2- help3(X.Y he|p3(X7Y) -
NOt(X=Y). [7-he p| (x.Y). J;?Lo\(()
jedi(luke). [?- jedi(X), X \=Y, jedi(Y).] jedi(Y).
jedi(yoda).
X=luke X=yoda
[2- jedi(luke), luke \= Y, jedi(Y). | | 2- jedi(yoda), yoda \= Y, jedi(Y). |
Y=luke Y=yoda
?- luke\=luke [?- yoda\=yoda]

luke=luke,! fail yoda=yoda,!fail

CMSC 330

55

» In fact, given X \=Y
* will always fail if X or Y are not both instantiated

X\=a //fails for X=a
a\=Y //fails for Y=a
X\=Y [/ fails for X=Y

CMSC 330

56

Example Using \=

» Example
jedi(luke).
jedi(yoda).
help2(X,Y) :- jedi(X), jedi(Y), X \=Y.
help3(X,Y) :- jedi(X), X \=Y, jedi(Y).
help4(X,Y) :- X\=Y, jedi(X), jedi(Y).

CMSC 330

Built-in Predicates

?- help4(X,luke).
false.

?- help4(yoda,luke).
true.

57

Built-in List Predicates

» sort(List,SortedList)
?- sort([2,1,3], R).
R=[1,2,3].

» findall(Elem,Predicate,ResultList)

?- findall(E,member(E,[huey, duey, luey]),R).

R=[huey,duey,luey].

» setof(Elem,Predicate,ResultSortedList)
?- setof(E,member(E,[huey, duey, luey]),R).

R=[duey,huey,luey].
» See documentation for more

* http://www.swi-prolog.org/pldoc/man?section=builtin

CMSC 330

59

» length(List,Length)
?- length([a, b, [1,2,3]], Length).
Length = 3.

» member(Elem,List)

?- member(duey, [huey, duey, luey]).
true.

?- member(X, [huey, duey, luey]).
X = huey; X = duey; X = luey.
» append(List1,List2,Result)

?- append([duey], [huey, duey, luey], X).

X = [duey, huey, duey, luey].

CMSC 330

Prolog Summary

58

» General purpose logic programming language
* Associated with Al, computational linguistics
* Also used for theorem proving, expert systems

» Declarative programming

» Specify facts & relationships between facts (rules)
* Run program as queries over these specifications

» Natural support for
» Searching within set of constraints
* Backtracking

CMSC 330

60

