
5/12/15 

1 

Interconnect Basics 

1 

Where Is Interconnect Used? 
n  To connect components 

n  Many examples 
q  Processors and processors 
q  Processors and memories (banks) 
q  Processors and caches (banks) 
q  Caches and caches 
q  I/O devices 

2 

Interconnection network 



5/12/15 

2 

Why Is It Important? 
n  Affects the scalability of the system 

q  How large of a system can you build? 
q  How easily can you add more processors? 

n  Affects performance and energy efficiency 
q  How fast can processors, caches, and memory communicate? 
q  How long are the latencies to memory? 
q  How much energy is spent on communication? 

3 

Interconnection Network Basics 
n  Topology 

q  Specifies the way switches are wired 
q  Affects routing, reliability, throughput, latency, building ease 

n  Routing (algorithm) 
q  How does a message get from source to destination 
q  Static or adaptive  

n  Buffering and Flow Control 
q  What do we store within the network? 

n  Entire packets, parts of packets, etc? 

q  How do we throttle during oversubscription? 
q  Tightly coupled with routing strategy 

4 



5/12/15 

3 

Topology 
n  Bus (simplest) 
n  Point-to-point connections (ideal and most costly) 
n  Crossbar (less costly) 
n  Ring 
n  Tree 
n  Omega 
n  Hypercube 
n  Mesh 
n  Torus 
n  Butterfly 
n  … 

5 

Metrics to Evaluate Interconnect Topology 

n  Cost 
n  Latency (in hops, in nanoseconds) 
n  Contention 

n  Many others exist you should think about 
q  Energy 
q  Bandwidth 
q  Overall system performance 

6 



5/12/15 

4 

Bus 
+ Simple 
+ Cost effective for a small number of nodes 
+ Easy to implement coherence (snooping and serialization) 
- Not scalable to large number of nodes (limited bandwidth, 

electrical loading à reduced frequency) 
- High contention à fast saturation 
 
 

7 

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
  

Point-to-Point  
Every node connected to every other 
 
+ Lowest contention 
+ Potentially lowest latency 
+ Ideal, if cost is not an issue 
 
-- Highest cost 
   O(N) connections/ports  
   per node 
   O(N2) links 
-- Not scalable 
-- How to lay out on chip? 
    8 

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  



5/12/15 

5 

Crossbar 
n  Every node connected to every other (non-blocking) except 

one can be using the connection at any given time 
n  Enables concurrent sends to non-conflicting destinations  
n  Good for small number of nodes 

+ Low latency and high throughput 
- Expensive 
- Not scalable à O(N2) cost 
- Difficult to arbitrate as N increases 
 
Used in core-to-cache-bank 
networks in 
- IBM POWER5 
- Sun Niagara I/II 

 
 

9 

0 1 2 3 4 5 6 7 

0 

1 

2 

3 

4 

5 

6 

7 

Buffered Crossbar 

10 

Output 
Arbiter 

Output 
Arbiter 

Output 
Arbiter 

Output 
Arbiter 

Flow 
Control 

Flow 
Control 

Flow 
Control 

Flow 
Control 

NI 

NI 

NI 

NI 

Buffered 
Crossbar 

0 

1 

2 

3 

NI 

NI 

NI 

NI 

Bufferless 
Crossbar 

0 

1 

2 

3 

+ Simpler 
arbitration/ 
scheduling 

 

+ Efficient 
support for 
variable-size 
packets 

-  Requires  
N2 buffers 

 
 
 
 



5/12/15 

6 

Can We Get Lower Cost than A Crossbar? 
n  Yet still have low contention? 

n  Idea: Multistage networks 

11 

Multistage Logarithmic Networks 
n  Idea: Indirect networks with multiple layers of switches 

between terminals/nodes 
n  Cost: O(NlogN), Latency: O(logN) 
n  Many variations (Omega, Butterfly, Benes, Banyan, …) 
n  Omega Network: 

 

12 

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

Omega Networ k

conflict   
 



5/12/15 

7 

Multistage Circuit Switched 

 
n  More restrictions on feasible concurrent Tx-Rx pairs 
n  But more scalable than crossbar in cost, e.g., O(N logN) for Butterfly 

13 

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

2-­‐by-­‐2	
  crossbar	
  

Multistage Packet Switched 

 
n  Packets “hop” from router to router, pending availability of 

the next-required switch and buffer 
14 

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

2-­‐by-­‐2	
  router	
  



5/12/15 

8 

Aside: Circuit vs. Packet Switching 
n  Circuit switching sets up full path 

q  Establish route then send data 
q  (no one else can use those links) 
+ faster arbitration 
-- setting up and bringing down links takes time 

n  Packet switching routes per packet 
q  Route each packet individually (possibly via different paths) 
q  if link is free, any packet can use it 
-- potentially slower --- must dynamically switch 
+ no setup, bring down time 
+ more flexible, does not underutilize links 

15 

Switching vs. Topology 
n  Circuit/packet switching choice independent of topology 
n  It is a higher-level protocol on how a message gets sent to 

a destination 

n  However, some topologies are more amenable to circuit vs. 
packet switching 

16 



5/12/15 

9 

Another Example: Delta Network 
n  Single path from source to 

destination 

n  Does not support all possible 
permutations 

 

n  Proposed to replace costly 
crossbars as processor-memory 
interconnect 

17 

8x8 Delta network 

Another Example: Omega Network 
n  Single path from source to 

destination 

n  All stages are the same 

18 



5/12/15 

10 

Ring 
+ Cheap: O(N) cost 
- High latency: O(N) 
- Not easy to scale 
   - Bisection bandwidth remains constant 
 
Used in Intel Haswell, Intel Larrabee, IBM Cell, many 

commercial systems today 
 

19 

M

P

RING

S

M

P

S

M

P

S

Unidirectional Ring 

n  Simple topology and implementation 
q  Reasonable performance if N and performance needs 

(bandwidth & latency) still moderately low 
q  O(N) cost 
q  N/2 average hops; latency depends on utilization 

20 

R	
  

0	
  

R	
  

1	
  

R	
  

N-­‐2	
  

R	
  

N-­‐1	
  

2	
  

2x2	
  router	
  



5/12/15 

11 

Mesh 
n  O(N) cost 
n  Average latency: O(sqrt(N)) 
n  Easy to layout on-chip: regular and equal-length links 
n  Path diversity: many ways to get from one node to another 

n  Used in Tilera 100-core 
n  And many on-chip network 
   prototypes 

21 

Torus 
n  Mesh is not symmetric on edges: performance very 

sensitive to placement of task on edge vs. middle 
n  Torus avoids this problem 
+ Higher path diversity (and bisection bandwidth) than mesh 
- Higher cost 
- Harder to lay out on-chip 
  - Unequal link lengths 
 

22 



5/12/15 

12 

Planar, hierarchical topology 
Latency: O(logN) 
Good for local traffic 
+ Cheap: O(N) cost 
+ Easy to Layout 
- Root can become a bottleneck 
  Fat trees avoid this problem (CM-5) 
 

Trees 

23 

Fat Tree 

Hypercube 

n  Latency: O(logN) 
n  Radix: O(logN) 
n  #links: O(NlogN) 
+ Low latency 
- Hard to lay out in 2D/3D 

24 

00
00 

01
01 

01
00 

00
01 

00
11 

00
10 

01
10 

01
11 

10
00 

11
01 

11
00 

10
01 

10
11 

10
10 

11
10 

11
11 



5/12/15 

13 

Caltech Cosmic Cube 
n  64-node message passing 

machine 

n  Seitz, “The Cosmic Cube,” 
CACM 1985. 

25 

Handling Contention 

n  Two packets trying to use the same link at the same time 
n  What do you do? 

q  Buffer one 
q  Drop one 
q  Misroute one (deflection) 

n  Tradeoffs? 

26 



5/12/15 

14 

Destination 

Bufferless Deflection Routing 
n  Key idea: Packets are never buffered in the network. When 

two packets contend for the same link, one is deflected.1 

27 
1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964. 

New traffic can be injected 
whenever there is a free 
output link. 

Routing Algorithm 
n  Types 

q  Deterministic: always chooses the same path for a 
communicating source-destination pair 

q  Oblivious: chooses different paths, without considering 
network state 

q  Adaptive: can choose different paths, adapting to the state 
of the network 

n  How to adapt 
q  Local/global feedback 
q  Minimal or non-minimal paths 

28 



5/12/15 

15 

Deterministic Routing 
n  All packets between the same (source, dest) pair take the 

same path 

n  Dimension-order routing 
q  E.g., XY routing (used in Cray T3D, and many on-chip 

networks) 
q  First traverse dimension X, then traverse dimension Y 

+ Simple 
+ Deadlock freedom (no cycles in resource allocation) 
- Could lead to high contention 
- Does not exploit path diversity 
 

29 

Deadlock 
n  No forward progress 
n  Caused by circular dependencies on resources 
n  Each packet waits for a buffer occupied by another packet 

downstream 

30 



5/12/15 

16 

Handling Deadlock 
n  Avoid cycles in routing 

q  Dimension order routing 
n  Cannot build a circular dependency 

q  Restrict the “turns” each packet can take 

n  Avoid deadlock by adding more buffering (escape paths) 
 
 
n  Detect and break deadlock 

q  Preemption of buffers 

31 

Oblivious Routing: Valiant’s Algorithm 
n  An example of oblivious algorithm 
n  Goal: Balance network load  
n  Idea: Randomly choose an intermediate destination, route 

to it first, then route from there to destination 
q  Between source-intermediate and intermediate-dest, can use 

dimension order routing 

+ Randomizes/balances network load 
- Non minimal (packet latency can increase) 
 
n  Optimizations: 

q  Do this on high load 
q  Restrict the intermediate node to be close (in the same quadrant) 

 
 

32 



5/12/15 

17 

Adaptive Routing 
n  Minimal adaptive 

q  Router uses network state (e.g., downstream buffer 
occupancy) to pick which “productive” output port to send a 
packet to 

q  Productive output port: port that gets the packet closer to its 
destination 

+ Aware of local congestion 
- Minimality restricts achievable link utilization (load balance) 
 

n  Non-minimal (fully) adaptive 
q  “Misroute” packets to non-productive output ports based on 

network state 
+ Can achieve better network utilization and load balance 
- Need to guarantee livelock freedom 

33 

Motivation for Efficient Interconnect 
n  In many-core chips, on-chip interconnect (NoC)    

consumes significant power 

 Intel Terascale: ~28% of chip power 
 Intel SCC:    ~10%  
 MIT RAW:    ~36% 
 

n  Recent work1 uses bufferless deflection routing to 
reduce power and die area 

34 

Core L1 

L2 Slice Router 

1Moscibroda and Mutlu, “A Case for Bufferless Deflection Routing in On-Chip Networks.” ISCA 2009. 


