Last time

We finished up Buffer overflows and other memory safety vulnerabilities

By looking at Overflow Defenses

- Buffer overflow defenses (and workarounds)
- Format string vulnerabilities
- Integer overflow vulnerabilities
This time

Continuing with Software Security

Getting sick with Malware

- Types of malware
- How viruses work
- Detecting viruses (and counter-measures)
- Case studies
Malware
Malicious code that is stored on and runs on a *victim’s* system

- How does it get to run?
 - Attacks a user- or network-facing *vulnerable service*
 - E.g., using techniques you learned the past couple weeks
 - **Backdoor**: Added by a malicious developer
 - **Social engineering**: Trick the user into running/ clicking/installing
 - **Trojan horse**: Offer a good service, add in the bad
 - Attacker with physical access downloads & runs it
Malware
Malicious code that is stored on and runs on a victim’s system

- How does it get to run?
 - Attacks a user- or network-facing vulnerable service
 - E.g., using techniques you learned the past couple weeks
 - Backdoor: Added by a malicious developer
 - Social engineering: Trick the user into running/clicking/installing
 - Trojan horse: Offer a good service, add in the bad
 - Attacker with physical access downloads & runs it

Potentially from any mode of interaction (automated or not), provided sufficient vulnerability
Malware

What can it do?

• Virtually *anything*, subject only to its permissions
 • Brag: “APRIL 1st HA HA HA HA HA YOU HAVE A VIRUS!”
 • Destroy:
 - Delete/mangle files
 - Damage hardware (more later this lecture)
 • Crash the machine, e.g., by over-consuming resources
 - Fork bombing or “rabbits”: `while(1) { fork(); }`
 • Steal information (“exfiltrate”)
 • Launch external attacks
 - Spam, click fraud, denial of service attacks
 • Ransomware: e.g., by encrypting files
 • Rootkits: Hide from user or software-based detection
 - Often by modifying the kernel
 - Man-in-the-middle attacks to sit between UI and reality
Malware

When does it run?

• Some delay based on a trigger
 • **Time bomb**: triggered at/after a certain time
 - On the 1st through the 19th of any month…
 • **Logic bomb**: triggered when a set of conditions hold
 - If I haven’t appeared in two consecutive payrolls…
• Can also include a **backdoor** to serve as ransom
 - “I won’t let it delete your files if you pay me by Thursday…”

• Some attach themselves to other pieces of code
 • **Viruses**: run when the user initiates something
 - Run a program, open an attachment, boot the machine
 • **Worms**: run while another program is running
 - No user intervention required
Self-propagating malware

- **Virus**: propagates by arranging to have itself eventually executed
 - At which point it creates a new, additional instance of itself
 - Typically infects by altering stored code
 - User intervention required

- **Worm**: self-propagates by arranging to have itself immediately executed
 - At which point it creates a new, additional instance of itself
 - Typically infects by altering running code
 - No user intervention required
Self-propagating malware

- **Virus**: propagates by arranging to have itself *eventually* executed
 - At which point it creates a new, additional instance of itself
 - Typically infects by altering *stored* code
 - User intervention required

- **Worm**: *self*-propagates by arranging to have itself *immediately* executed
 - At which point it creates a new, additional instance of itself
 - Typically infects by altering *running* code
 - No user intervention required

The line between these is thin and blurry
Some malware uses both styles
Technical challenges

• Viruses: Detection
 • Antivirus software wants to detect
 • Virus writers want to avoid detection for as long as possible
 • *Evade* human response

• Worms: Spreading
 • The goal is to hit as many machines and as quickly as possible
 • *Outpace* human response
Viruses
Viruses

• They are **opportunistic**: they will *eventually* be run due to user action

• Two *orthogonal* aspects define a virus:
 1. How does it **propagate**?
 2. What else does it do (what is the “**payload**”)?

• General infection strategy:
 • Alter some existing code to include the virus
 • Share it, and expect users to (unwittingly) re-share

• Viruses have been around since at least the 70s
How viruses infect other programs

Entry point

Original program
How viruses infect other programs

Original program

Entry point

Virus

Take over the entry point
Viruses are classified by what they infect
Viruses are classified by what they infect

- **Document viruses**
 - Implemented within a formatted document
 - Word documents (very rich macros)
 - PDF (Acrobat permits javascript)
 - (Why you shouldn’t open random attachments)
Viruses are classified by what they infect

- **Document viruses**
 - Implemented within a formatted document
 - Word documents (very rich macros)
 - PDF (Acrobat permits javascript)
 - (Why you shouldn’t open random attachments)

- **Boot sector viruses**
 - Boot sector: small disk partition at a fixed location
 - If the disk is used to **boot**, then the firmware loads the boot sector code into memory and runs it
 - What’s *supposed* to happen: this code loads the OS
 - Similar: AutoRun on music/video disks
 - (Why you shouldn’t plug random USB drives into your computer)
Viruses are classified by what they infect

- **Document viruses**
 - Implemented within a formatted document
 - Word documents (very rich macros)
 - PDF (Acrobat permits javascript)
 - (Why you shouldn’t open random attachments)

- **Boot sector viruses**
 - Boot sector: small disk partition at a fixed location
 - If the disk is used to **boot**, then the firmware loads the boot sector code into memory and runs it
 - What’s *supposed* to happen: this code loads the OS
 - Similar: AutoRun on music/video disks
 - (Why you shouldn’t plug random USB drives into your computer)

- **Memory-resident viruses:**
 - “Resident code” stays in memory because it is used so often
Viruses have resulted in a technological arms race

The key is *evasion*
Viruses have resulted in a technological arms race

The key is *evasion*

Mechanisms for evasive propagation
Viruses have resulted in a technological arms race

The key is *evasion*

Mechanisms for *evasive propagation*

Mechanisms for *detection* and *prevention*
Viruses have resulted in a technological arms race

The key is *evasion*

Mechanisms for evasive propagation

Mechanisms for detection and prevention
Viruses have resulted in a technological arms race

The key is *evasion*

Mechanisms for evasive propagation

Want to be able to claim wide coverage for a long time

Mechanisms for detection and prevention

Want to be able to claim the ability to detect *many* viruses
How viruses propagate

• First, the virus looks for an **opportunity to run**. Increase chances by attaching malicious code to something a user is likely to run
 • autorun.exe on storage devices
 • Email attachments

• When a virus runs, it looks for an **opportunity to infect** other systems.
 • User plugs in a USB thumb drive: try to overwrite autorun.exe
 • User is sending an email: alter the attachment
 • Viruses can also proactively create emails ("I Love You")
Detecting viruses

- **Method 1: Signature-based detection**
 - Look for bytes corresponding to injected virus code
 - Protect other systems by installing a recognizer for a known virus
 - In practice, requires fast scanning algorithms

- This basic approach has driven the multi-billion dollar antivirus market

- #Recognized signatures is a means of **marketing** and competition
 - But what does that say about how important they are?
Um.. thanks?
Security experts and executives at security vendors are in agreement that signature-based antivirus isn't able to keep up with the explosion of malware. For example, in 2009, Symantec says it wrote about 15,000 antivirus signatures a day; that number has increased to 25,000 antivirus signatures every day.

"Signatures have been dying for quite a while," says Mikko H. Hypponen, chief research officer of Finnish-based antivirus vendor, F-Secure. "The sheer number of malware samples we see every day completely overwhelms our ability to keep up with them."

Security vendors have responded by updating their products with additional capabilities, such as file reputation and heuristics-based engines. They're also making upgrades to keep up with the latest technology trends, such as virtualization and cloud computing.
You are a virus writer
You are a virus writer

- Your goal is for your virus to spread far and wide
You are a virus writer

• Your goal is for your virus to spread far and wide
• How do you avoid detection by antivirus software?
You are a virus writer

• Your goal is for your virus to spread far and wide

• How do you avoid detection by antivirus software?

 1. Give them a harder signature to find
How viruses infect other programs

Entry point

Original program

Entry point

Virus

Original program

“Appending”
How viruses infect other programs

- Original program
- Entry point
- Virus
- Original program
- "Appending"
- "Surrounding"

Diagram:
- Original program
- Virus
- jmp
- jmp
How viruses infect other programs

- **Original program**
- **Virus**

Entry point

- “Appending”
- “Surrounding”

Overwrite uncommonly used parts of the program
How viruses infect other programs

Original program

Entry point

Virus

Original program

“Appending”

“Surrounding”

Confuse scanners

Overwrite uncommonly used parts of the program
This time

Continuing with Software Security

Getting sick with Malware

- Types of malware
- How viruses work
- Detecting viruses (and counter-measures)
- Case studies
You are a virus writer
You are a virus writer

• Your goal is for your virus to spread far and wide

• How do you avoid detection by antivirus software?
 1. Give them a harder signature to find
You are a virus writer

• Your goal is for your virus to spread far and wide

• How do you avoid detection by antivirus software?
 1. Give them a harder signature to find
 2. Change your code so they can’t pin down a signature
You are a virus writer

• Your goal is for your virus to spread far and wide

• How do you avoid detection by antivirus software?
 1. Give them a harder signature to find
 2. *Change* your code so they can’t pin down a signature

Mechanize code changes:

Goal: every time you inject your code, it looks different
Polymorphic viruses

Entry point → Virus → Original program

Take over the entry point
Polymorphic viruses

Entry point
Virus
Original program
Take over the entry point
Polymorphic viruses

Entry point

Virus

Original program

Decrypter

Key

Encrypted virus code

Take over the entry point
Polymorphic viruses

Virus
Encrypted virus code
Key
Decrypter
Original program
Entry point

Take over the entry point

Decrypted virus code
Virus code
Decrypter
Key

jmp
Polymorphic viruses

- Encrypted virus code

- Virus code

- Decrypter

- Key

- Encryptor

- jmp

Diagram:

1. Decrypter
2. Key
3. Encrypted virus code
4. Virus code
5. Encryptor
Polymorphic viruses

Encrypted virus code

Virus code

Encrypted virus code (same code, but each time you encrypt it looks different)
Polymorphic viruses

When used properly, encryption will yield a different, random output upon each invocation.
Crypting services
Crypting services

code

Crypting service
Crypting services

Many different vendors

AV AV
AV AV
AV AV

code

Crypting service
Crypting services

Many different vendors

AV AV AV AV
Crypting services

Many different vendors

AV
AV
AV
AV

Crypting service

code

detected
Crypting services

Iteratively obfuscate the code (encrypt + jmp + ...)

Many different vendors

AV AV AV AV

AV AV AV AV
Crypting services

Iteratively obfuscate the code (encrypt + jmp + ...)

Many different vendors

AV AV
AV AV
AV AV
Crypting services

Iteratively obfuscate the code (encrypt + jmp + ...)

Many different vendors

CoDe
Crypting services

Iteratively obfuscate the code (encrypt + jmp + ...)

Many different vendors

AV
AV
AV
AV
Crypting services

Iteratively obfuscate the code (encrypt + jmp + …)

Until the obfuscated code is “fully undetectable”
Crypting services

Iteratively obfuscate the code (encrypt + jmp + …)

Until the obfuscated code is “fully undetectable”
Crypting services

Iteratively obfuscate the code (encrypt + jmp + …)

Until the obfuscated code is “fully undetectable”

2013: Web-based crippling services
One charged $20 to “remain undetected for more than 7 days”
Polymorphic viruses: Arms race

Now you are the antivirus writer: how do you detect?
Polymorphic viruses: Arms race

Now you are the antivirus writer: how do you detect?

• Idea #1: Narrow signature to catch the decrypter
 • Often very small: can result in many false positives
 • Attacker can spread this small code around and jmp

• Idea #2: Execute or statically analyze the suspect code to see if it decrypts.
 • How do you distinguish from common “packers” which do something similar (decompression)?
 • How long do you execute the code??
Polymorphic viruses: Arms race

Now you are the antivirus writer: how do you detect?

• Idea #1: Narrow signature to catch the decrypter
 • Often very small: can result in many false positives
 • Attacker can spread this small code around and jmp

• Idea #2: Execute or statically analyze the suspect code to see if it decrypts.
 • How do you distinguish from common “packers” which do something similar (decompression)?
 • How long do you execute the code??

Now you are the virus writer again: how do you evade?
Polymorphic countermeasures

• Change the decrypter
 • Oligomorphic viruses: change to one of a fixed set of decrypters
 • True polymorphic viruses: can generate an endless number of decrypters
 - e.g., brute force key break
 - Downside: inefficient
Metamorphic code
Metamorphic code

• Every time the virus propagates, generate a semantically different version of the code
 • Higher-level semantics remain the same
 • But the way it does it differs
 - Different machine code instructions
 - Different algorithms to achieve the same thing
 - Different use of registers
 - Different constants….
Metamorphic code

• Every time the virus propagates, generate a semantically different version of the code
 • Higher-level semantics remain the same
 • But the way it does it differs
 - Different machine code instructions
 - Different algorithms to achieve the same thing
 - Different use of registers
 - Different constants….

• How would you do this?
 • Include a code rewriter with your virus
 • Add a bunch of complex code to throw others off (then just never run it)
Figure 4: Win95/Regswap using different registers in new generations
ZPerm can directly reorder the instructions in its own code

Figure 7: Zperm.A inserts JMP instruction into its code
a. An early generation:

C7060F000055 mov dword ptr [esi],5500000Fh
C746048BEC5151 mov dword ptr [esi+0004],5151EC8Bh

b. And one of its later generations:

BF0F000055 mov edi,5500000Fh
893E mov [esi],edi
5F pop edi
52 push edx
B640 mov dh,40
BA8BEC5151 mov edx,5151EC8Bh
53 push ebx
8BDA mov ebx,edx
895E04 mov [esi+0004],ebx

c. And yet another generation with recalculated ("encrypted") "constant" data.

BB0F000055 mov ebx,5500000Fh
891E mov [esi],ebx
5B pop ebx
51 push ecx
B9CB00C05F mov ecx,5FC000CBh
81C1C0EB91F1 add ecx,F191EBC0h ; ecx=5151EC8Bh
894E04 mov [esi+0004],ecx

Figure 6: Example of code metamorphosis on Win32/Evol
Polymorphic

When can AV software successfully scan?

Figure 8: A partial or complete snapshot of polymorphic virus during execution cycle
Metamorphic

When can AV software successfully scan?

Figure 10: T-1000 of Terminator 2
Detecting metamorphic viruses?
Detecting metamorphic viruses

- Scanning isn’t enough: need to **analyze execution behavior**

- Two broad stages in practice (both take place in a safe environment, like gdb or a virtual machine)
 1. AV company analyzes new virus to find **behavioral signature**
 2. AV system at the end host analyzes suspect code to see if it matches the signature
Detecting metamorphic viruses

• Countermeasures
 • Have your virus change slowly (hard to create a proper behavioral signature)
 • Detect if you are in a safe execution environment (e.g., gdb) and act differently

• Counter-countermeasures
 • Detect detection and skip those parts

• Counter-counter-counter…. Arms race
Detecting metamorphic viruses

• Countermeasures
 • Have your virus change slowly (hard to create a proper behavioral signature)
 • Detect if you are in a safe execution environment (e.g., gdb) and act differently

• Counter-countermeasures
 • **Detect detection** and skip those parts

• Counter-counter-counter…. Arms race

Attackers have the upper hand:
AV systems hand out signatures, thus serving as an *oracle*
Putting it all together sounds hard

- **Creating** a virus can be really difficult
 - Historically error prone

- But **using** them is easy: any scriptkiddy can use metasploit
 - Good news: so can any white hat pen tester
Putting it all together sounds hard

- **Creating** a virus can be really difficult
 - Historically error prone

- But **using** them is easy: any *scriptkiddy* can use metasploit
 - Good news: so can any white hat pen tester
So how much malware is out there?

• Polymorphic and metamorphic viruses can make it easy to miscount viruses

• Take numbers with a grain of salt
 • Large numbers are in the AV vendors’ best interest
How do we clean up an infection?

- Depends what the virus did, but..

- May require restoring / repairing files
 - A service that antivirus companies sell

- What if the virus ran as root?
 - May need to rebuild the entire system

- So what, just recompile it?
 - What if the malware left a backdoor in your compiler?
 - Compile the malware back into the compiler
 - May need to use original media and data backups
Next time

Continuing with

Software Security

Going digging for Worms & virus case studies

Optional reading for this lecture:
“Hunting for Metamorphic”
“A History of Computer Viruses — The Famous ‘Trio’”

Required reading for next time:
“How to Own the Internet in your Spare Time”