CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata

How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - Mixture of a very practical tool (string matching with REs) and some nice theory
 - A great computer science result

A Few Questions About REs

- How are REs implemented?
 - Implementing a one-off RE is not so hard
 - How to do it in general?
 - We’ll see how to build a structure to parse REs

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., we saw that \(e^+ \) is the same as \(ee^* \)

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation
Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

Example alphabets:
- Binary: $\Sigma = \{0, 1\}$
- Decimal: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$

Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \varepsilon \} \neq \varepsilon$

Example strings:
- $0101 \in \Sigma = \{0, 1\}$ (binary)
- $0101 \in \Sigma = \text{decimal}$
- $0101 \in \Sigma = \text{alphanumeric}$

Definition: String concatenation

- String concatenation is indicated by juxtaposition
 - If $s_1 = \text{super}$ and $s_2 = \text{hero}$, then $s_1s_2 = \text{superhero}$
 - Sometimes also written $s_1 \cdot s_2$
 - For any string s, we have $s\varepsilon = \varepsilon s = s$
 - You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:
 - If $s_1 = \text{super} \in \Sigma_1 = \{s,u,p,e,r\}$ and $s_2 = \text{hero} \in \Sigma_2 = \{h,e,r,o\}$, then $s_1s_2 = \text{superhero} \in \Sigma_3 = \{e,h,o,p,r,s,u\}$

Definition: Language

- A language L is a set of strings over an alphabet

Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
- Give an example element of this language
- Are all strings over the alphabet in the language? No
- Is there a Ruby regular expression for this language? \\
 `/^(\d{3})\-\d{3}\-\d{4}$/`

Example: The set of all strings over Σ
- Often written Σ^*
Definition: Language (cont.)

- Example: The set of strings of length 0 over the alphabet \(\Sigma = \{ a, b, c \} \)
 - \(L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \} = \{ \epsilon \} \neq \emptyset \)

- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language?
 - No. Matching (arbitrary number of) brackets so that they are balanced is impossible using REs \(\{ \{ \ldots \} \} \)

- REs represent languages, but not all of them
 - The languages represented by regular expressions are called, appropriately, the regular languages

Definition: Regular Expressions

- Given an alphabet \(\Sigma \), the regular expressions over \(\Sigma \) are defined inductively as
 - constants
 - each element \(\sigma \in \Sigma \)

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>({ \epsilon })</td>
</tr>
<tr>
<td>each element (\sigma \in \Sigma)</td>
<td>({ \sigma })</td>
</tr>
</tbody>
</table>

Operations on Languages

- Let \(\Sigma \) be an alphabet and let \(L, L_1, L_2 \) be languages over \(\Sigma \)
- Concatenation \(L_1L_2 \) is defined as
 - \(L_1L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \} \)
- Union is defined as
 - \(L_1 \cup L_2 = \{ x \mid x \in L_1 \text{ or } x \in L_2 \} \)
- Kleene closure is defined as
 - \(L^* = \{ x \mid x = \epsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \} \)
Regular Expressions Denote Languages

By applying operations on constants
- Generates a set of strings (i.e., a language)
- Examples
 - $\emptyset \rightarrow \{\}$
 - $a \rightarrow \{a\}$
 - $a \cup b \rightarrow \{a, b\}$
 - $a^n \rightarrow \{a, aa, aaaa, \ldots\}$

If $s \in$ language generated by a RE r, we say that r accepts, describes, or recognizes string s.

Precedence

Order in which operators are applied
- In arithmetic
 - Multiplication \times > addition +
 - $2 \times 3 + 4 = (2 \times 3) + 4 = 10$
- In regular expressions
 - Kleene closure * > concatenation \cdot > union $|$
 - $ab(c = (a b) | c = (ab, c))$
 - $ab^* = a (b^*) = \{a, ab, abb, \ldots\}$
 - $a|b^n \rightarrow \{a|b^* = a | (b^*) = \{a, \ldots b, bb, bbb, \ldots\}$
 - Can change order using parentheses ()
 - E.g., $a(b(c), (ab)^*, (a|b)^*)$

Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition
- `/Ruby/ – concatenation of single-character REs`
- `/\{Ruby\}(Regular)/ – union`
- `/\{Ruby\}^*/ – Kleene closure`
- `/\{Ruby\}+/ – same as (Ruby)(Ruby)^*`
- `/\{Ruby\}?/ – same as (\epsilon)(Ruby) (\epsilon is \epsilon)`
- `/\{a-z\}/ – same as (a|b|c|\ldots z)`
- `/[^0-9]/ – same as (a|b|c|\ldots) for \{a,b,c,\ldots \in \Sigma - \{0,9\}`
- `^, $ – correspond to extra characters in alphabet`

Regular Languages

The languages that can be described using regular expressions are the regular languages or regular sets.

Not all languages are regular
- Examples (without proof):
 - The set of palindromes over Σ
 - reads the same backward or forward
 - $\{a^n b^n | n > 0\} \{a^n = \text{sequence of } n \text{ a's}\}$

Almost all programming languages are not regular
- But aspects of them sometimes are (e.g., identifiers)
- Regular expressions are commonly used in parsing tools
Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
 - A “machine” for recognizing a regular language

“String”
“String” “String”
“String”
“String”

Finite Automata

- Machine starts in start or initial state
- Repeat until the end of the string is reached
 - Scan the next symbol s of the string
 - Take transition edge labeled with s
- String is accepted if automaton is in final state when end of string reached

Finite Automata: States

- Start state
 - State with incoming transition from no other state
 - Can have only 1 start state

- Final states
 - States with double circle
 - Can have 0 or more final states
 - Any state, including the start state, can be final

Finite Automaton: Example 1
Finite Automaton: Example 2

What Language is This?

Finite Automaton: Example 3

Finite Automaton: Example 3 (cont.)
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?
- Strings over \(\{0,1,2,3\}\) with alternating even and odd digits, beginning with odd digit

Finite Automaton: Example 4

- \(a^*b^*c^*\) again, so DFAs are not unique

Finite Automaton: Example 5

- Description for each state
 - \(S_0 = \text{“Haven’t seen anything yet” OR “seen zero or more b’s” OR “Last symbol seen was a b”}
 - \(S_1 = \text{“Last symbol seen was an a”}
 - \(S_2 = \text{“Last two symbols seen were ab”}
 - \(S_3 = \text{“Last three symbols seen were abb”}

The Questions (for next time)

- Are FAs equivalent to regular expressions?
 - Every FA can be translated into an RE
 - Every RE can be translated into an FA
 - Yes!

- How can we generate an FA for a given RE?
 - If we can do this, we can implement RE matching

- How can we optimize an FA?
 - Many FAs can implement the same language
 - Some might be more efficient than others
Practice

Give the English descriptions and the DFA or regular expression of the following languages:

- \(((0|1)(0|1)(0|1)(0|1)(0|1))^*\)
 - All strings with length a multiple of 5
- \((01)^*(10)^*(01)^*0|(10)^*1\)
 - All alternating binary strings

Review

- Languages
 - Sets of strings
 - Operations on languages
- Regular expressions
 - Constants
 - Operators
 - Precedence
- Finite automata
 - States
 - Transitions
 - Accept strings

Practice

- Give the regular expressions and finite automata for the following languages
 - You and your neighbors’ names
 - All protein-coding DNA strings (including only ATCG and appearing in multiples of 3)
 - All binary strings containing an even length substring of all 1’s
 - All binary strings containing exactly two 1’s
 - All binary strings that start and end with the same number