Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far

- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA

Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - i.e., transition function must be a valid function
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
NFA for \((a|b)^*abb\)

- \(ba\)
 - Has paths to either \(S0\) or \(S1\)
 - Neither is final, so rejected
- \(babaabb\)
 - Has paths to different states
 - One path leads to \(S3\), so accepts string

NFA for \((ab|aba)^*\)

- \(aba\)
 - Has paths to states \(S0, S1\)
- \(ababa\)
 - Has paths to \(S0, S1\)
 - Need to use \(\varepsilon\)-transition

Another example DFA

- Language?
 - \((ab|aba)^*\)

Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions
- A DFA accepts \(s\) if it stops at a final state on \(s\)

Formal Definition: Example

- \(\Sigma = \{0, 1\}\)
- \(Q = \{S0, S1\}\)
- \(q_0 = S0\)
- \(F = \{S1\}\)
- \(\delta\) is defined as:

<table>
<thead>
<tr>
<th>Input</th>
<th>State 0</th>
<th>State 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S0</td>
<td>S0</td>
</tr>
<tr>
<td>1</td>
<td>S1</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as \{(S0,0,S01),(S0,1,S1),(S1,0,S0),(S1,1,S1)\}

Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) specifies the NFA's transitions
 - Transitions on \(\epsilon\) are allowed—can optionally take these transitions without consuming any input
 - Can have more than one transition for a given state and symbol
 - \(\delta\) is a relation, not a function
- An NFA accepts \(s\) if there is at least one path from its start to final state on \(s\)

Reducing Regular Expressions to NFAs

- Goal: Given regular expression \(e\), construct NFA: \(\langle e \rangle = (\Sigma, Q, q_0, F, \delta)\)
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: \(|F| = 1\) in our NFAs
 - Recall \(F\) = set of final states
 - Base case: \(a\)
 - \(\langle a \rangle = \{(a), (S0, S1), S0, \{S1\}, \{(S0, a, S1)\}\}\)
Reduction (cont.)

- Base case: ε

 $$\langle \varepsilon \rangle = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$$

- Base case: \emptyset

 $$\langle \emptyset \rangle = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$$

Reduction: Concatenation (cont.)

- Induction: AB

 $$\langle A \rangle \cdot \langle B \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})$$

Reduction: Concatenation

- Induction: AB

 $\langle A \rangle \cdot \langle B \rangle$

Reduction: Union

- Induction: $(A \mid B)$

 $\langle A \rangle \mid \langle B \rangle$
Reduction: Union (cont.)

- Induction: $(A|B)$

\[
\begin{align*}
\langle A \rangle &= (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \\
\langle B \rangle &= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \\
\langle (A|B) \rangle &= (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \\
&\quad \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})
\end{align*}
\]

Reduction: Closure (cont.)

- Induction: A^*

\[
\begin{align*}
\langle A \rangle &= (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \\
\langle A^* \rangle &= (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\}, \\
&\quad \delta_A \cup \{(f_A,\epsilon,S1), (S0,\epsilon,q_A), (S0,\epsilon,S1), (S1,\epsilon,S0)\})
\end{align*}
\]

Reduction Complexity

- Given a regular expression A of size n...
 Size = # of symbols + # of operations

- How many states does $\langle A \rangle$ have?
 - 2 added for each \mid, 2 added for each *
 - $O(n)$
 - That’s pretty good!
Practice

- Draw NFAs for the following regular expressions and languages
 - \((0|1)^*110^*\)
 - \(101^*111\)
 - all binary strings ending in 1 (odd numbers)
 - all alphabetic strings which come after “hello” in alphabetic order
 - \((ab^*c|d*a|ab)d\)

Recap

Finite automata
- Alphabet, states…
- \((\Sigma, Q, q_0, F, \delta)\)

Types
- Deterministic (DFA)
- Non-deterministic (NFA)

Reducing RE to NFA
- Concatenation
- Union
- Closure

Next

- Reducing NFA to DFA
 - \(\varepsilon\)-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

How NFA Works

When NFA processes a string
- NFA may be in several possible states
 - Multiple transitions with same label
 - \(\varepsilon\)-transitions

Example
- After processing “a”
 - NFA may be in states
 - S1
 - S2
 - S3
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states
- Example

\[\begin{array}{c}
\text{NFA}\\
S_1 \rightarrow S_2 \rightarrow \epsilon \rightarrow S_3
\end{array} \quad \begin{array}{c}
\text{DFA}\\
S_1 \rightarrow S_1, S_2, S_3
\end{array} \]

Reducing NFA to DFA (cont.)

- Reduction applied using the \textit{subset} algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - NFA \((\Sigma, Q, q_0, F_n, \delta)\)
 - Output
 - DFA \((\Sigma, R, r_0, F_d, \delta)\)
 - Using two subroutines
 - \(\varepsilon\)-\text{closure}(p)
 - move(p, a)

\(\varepsilon\)-transitions and \(\varepsilon\)-closure

- We say \(p \xrightarrow{\varepsilon} q\)
 - If it is possible to go from state \(p\) to state \(q\) by taking only \(\varepsilon\)-transitions
 - If \(\exists p, p_1, p_2, \ldots, p_n, q \in Q\) such that
 - \(\{p, \varepsilon, p_1\} \in \delta\), \(\{p_1, \varepsilon, p_2\} \in \delta, \ldots, \{p_n, \varepsilon, q\} \in \delta\)
- \(\varepsilon\)-\text{closure}(p)
 - Set of states reachable from \(p\) using \(\varepsilon\)-transitions alone
 - Set of states \(q\) such that \(p \xrightarrow{\varepsilon} q\)
 - \(\varepsilon\)-\text{closure}(p) = \{q \mid p \xrightarrow{\varepsilon} q\}
 - Note
 - \(\varepsilon\)-\text{closure}(p) always includes \(p\)
 - \(\varepsilon\)-\text{closure}() may be applied to set of states (take union)

\(\varepsilon\)-closure: Example 1

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_2\)
 - \(S_2 \xrightarrow{\varepsilon} S_3\)
 - \(S_1 \xrightarrow{a} S_3\)
 - Since \(S_1 \xrightarrow{\varepsilon} S_2\) and \(S_2 \xrightarrow{\varepsilon} S_3\)
- \(\varepsilon\)-\text{closures}
 - \(\varepsilon\)-\text{closure}(S1) = \{ S1, S2, S3 \}
 - \(\varepsilon\)-\text{closure}(S2) = \{ S2, S3 \}
 - \(\varepsilon\)-\text{closure}(S3) = \{ S3 \}
 - \(\varepsilon\)-\text{closure}(\{ S1, S2 \}) = \{ S1, S2, S3 \} \cup \{ S2, S3 \} \)
ε-closure: Example 2

Following NFA contains:
- $S_1 \xrightarrow{\varepsilon} S_3$
- $S_3 \xrightarrow{\varepsilon} S_2$
- $S_1 \xrightarrow{\varepsilon} S_2$

Since $S_1 \xrightarrow{\varepsilon} S_3$ and $S_3 \xrightarrow{\varepsilon} S_2$,

ε-closures
- ε-closure(S_1) = \{ S_1, S_2, S_3 \}
- ε-closure(S_2) = \{ S_2 \}
- ε-closure(S_3) = \{ S_2, S_3 \}
- ε-closure(\{ S_2, S_3 \}) = \{ S_2 \} \cup \{ S_2, S_3 \}

ε-closure: Practice

Find ε-closures for following NFA:

Find ε-closures for the NFA you construct for:
- The regular expression $(0|1^*)111(0^*|1)$

Calculating move(p,a)

move(p,a)
- Set of states reachable from p using exactly one transition on a
 - Set of states q such that $\{p, a, q\} \in \delta$
 - $\text{move}(p, a) = \{q | \{p, a, q\} \in \delta\}$

- Note: move(p,a) may be empty \emptyset
 - If no transition from p with label a

move(a,p) : Example 1

Following NFA:
- $\Sigma = \{ a, b \}$

Move:
- $\text{move}(S_1, a) = \{ S_2, S_3 \}$$\text{move}(S_1, b) = \emptyset$
- $\text{move}(S_2, a) = \emptyset$$\text{move}(S_2, b) = \{ S_3 \}$
- $\text{move}(S_3, a) = \emptyset$$\text{move}(S_3, b) = \emptyset$
move(a,p) : Example 2

- Following NFA
 - $\Sigma = \{a, b\}$

- Move
 - $\text{move}(S1, a) = \{S2\}$
 - $\text{move}(S1, b) = \{S3\}$
 - $\text{move}(S2, a) = \{S3\}$
 - $\text{move}(S2, b) = \emptyset$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$

NFA \rightarrow DFA Reduction Algorithm

- Input NFA $(\Sigma, Q, q_0, F_n, \delta)$, Output DFA $(\Sigma, R, r_0, F_d, \delta)$

- Algorithm
 - Let $r_0 = \varepsilon$-closure(q_0), add it to R // DFA start state
 - While \exists an unmarked state $r \in R$
 - Mark r // each state visited once
 - For each $a \in \Sigma$
 - Let $S = \{s \mid q \in r \& \text{move}(q,a) = s\}$ // states reached via a
 - Let $e = \varepsilon$-closure(S) // states reached via ε
 - If $e \notin R$
 - Let $R = R \cup \{e\}$ // if state e is new
 - Let $F_d = \{r \mid \exists s \in r \& s \in F_n\}$ // final if include state in F_n
NFA → DFA Example 1 (cont.)

- \(R = \{ \{S1, S3\}, \{S2\}, \{S3\} \} \)
- \(r \in R = \{S3\} \)
- \(\text{Move}((S3),a) = \emptyset \)
- \(\text{Move}((S3),b) = \emptyset \)
- Mark \((S3) \), exit loop
- \(F_d = \{(S1, S3), (S3)\} \)
 - Since \(S3 \in F_n \)
- Done!

NFA → DFA Example 2

- \(R = \{ \{A\}, \{B, D\} \} \)

NFA → DFA Example 3

- \(R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \} \)

Analyzing the reduction

- Any string from \(\{A\} \) to either \(\{D\} \) or \(\{CD\} \)
 - Represents a path from \(A \) to \(D \) in the original NFA
Analyzing the reduction (cont’d)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input
- Algorithm
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y \) belong in same partition if and only if for all symbols in \(\Sigma \) they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition \(\{S, T, U, V\} \)
 - All transitions on \(a \) lead to identical partition \(P2 \)
 - Even though transitions on \(a \) lead to different states
Splitting Partitions (cont.)

- Need to split partition \(\{S,T,U\} \) into \(\{S,T\}, \{U\} \)
 - Transitions on \(a \) from \(S,T \) lead to partition \(P_2 \)
 - Transition on \(a \) from \(U \) lead to partition \(P_3 \)

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \(\{S,T,U\} \)
 - After splitting partition \(\{X,Y\} \) into \(\{X\}, \{Y\} \)
 - Need to split partition \(\{S,T,U\} \) into \(\{S,T\}, \{U\} \)

DFA Minimization Algorithm (1)

- Input DFA \((\Sigma, Q, q_0, F_n, \delta) \), Output DFA \((\Sigma, R, r_0, F_d, \delta) \)
- Algorithm

 Let \(p_0 = F_n, p_1 = Q - F \) \hspace{1cm} // initial partitions = final, nonfinal states
 Let \(R = \{ p | p \in \{p_0,p_1\} \text{ and } p \neq \emptyset \} \), \(P = \emptyset \) \hspace{1cm} // add \(p \) to \(R \) if nonempty

 While \(P \neq R \) do \hspace{1cm} // while partitions changed on prev iteration

 Let \(P = R \), \(R = \emptyset \) \hspace{1cm} // \(P \) = prev partitions, \(R \) = current partitions

 For each \(p \in P \) \hspace{1cm} // for each partition from previous iteration

 \((p_0,p_1) = \text{split}(p,P) \) \hspace{1cm} // split partition, if necessary

 \(R = R \cup \{ p | p \in \{p_0,p_1\} \text{ and } p \neq \emptyset \} \) \hspace{1cm} // add \(p \) to \(R \) if nonempty

 \(r_0 = p \in R \text{ where } q_0 \in p \) \hspace{1cm} // partition w/ starting state

 \(F_d = \{ p | p \in R \text{ and exists } s \in p \text{ such that } s \in F_n \} \) \hspace{1cm} // partitions w/ final states

 \(\delta(p,c) = q \text{ when } \delta(s,c) = r \text{ where } s \in p \text{ and } r \in q \) \hspace{1cm} // add transitions

DFA Minimization Algorithm (2)

- Algorithm for \(\text{split}(p,P) \)

 Choose some \(r \in p \), let \(q = p - \{r\}, m = \{\} \) \hspace{1cm} // pick some state \(r \) in \(p \)

 For each \(s \in q \) \hspace{1cm} // for each state in \(p \) except for \(r \)

 For each \(c \in \Sigma \) \hspace{1cm} // for each symbol in alphabet

 If \(\delta(r,c) = q_0 \text{ and } \delta(s,c) = q_1 \text{ and } \) \hspace{1cm} // \(q_0 \text{ and } q_1 \) are states reached for \(c \)

 there is no \(p_1 \in P \) such that \(q_0 \in p_1 \) and \(q_1 \in p_1 \) then

 \(m = m \cup \{s\} \) \hspace{1cm} // add \(s \) to \(m \) if \(q_0 \text{ and } q_1 \) are not in same partition

 Return \(p - m, m \) \hspace{1cm} // \(m \) = states that behave differently than \(r \)

 \(m \) may be \(\emptyset \) if all states behave the same

 \(p - m \) = states that behave the same as \(r \)

Minimizing DFA: Example 1

DFA

- Initial partitions
 - Accept { R } = P1
 - Reject { S, T } = P2

- Split partition? → Not required, minimization done
 - move(S,a) = T ∈ P2
 - move(T,a) = T ∈ P2

After cleanup

Minimizing DFA: Example 2

DFA

- Initial partitions
 - Accept { R } = P1
 - Reject { S, T } = P2

- Split partition? → Not required, minimization done
 - move(S,a) = T ∈ P2
 - move(T,a) = S ∈ P2

After cleanup

Minimizing DFA: Example 3

DFA

- Initial partitions
 - Accept { R } = P1 minimal
 - Reject { S, T } = P2

- Split partition? → Yes, different partitions for B
 - move(S,a) = T ∈ P2
 - move(T,a) = T ∈ P2

Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - Σ = {a,b}

A

B

a

b
Complement of DFA (cont.)

- **Algorithm**
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- **Note this only works with DFAs**
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

Reducing DFAs to REs

- **General idea**
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

Relating REs to DFAs and NFAs

- **Why do we want to convert between these?**
 - Can make it easier to express ideas
 - Can be easier to implement
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("rejected\n"); return 0;
            default: printf("rejected\n"); return 0;
        } break;
        case 1: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("accepted\n"); return 1;
            default: printf("rejected\n"); return 0;
        } break;
        default: printf("unknown state; I'm confused\n"); break;
    }
}
```

Run Time of DFA

- **How long for DFA to decide to accept/reject string** s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can't get much faster!
- **Constructing DFA for RE A may take** $O(2^{|A|})$ time
 - But usually not the case in practice
- **So there's the initial overhead**
 - But then processing strings is fast

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```c
given components $(\Sigma, Q, q_A, F, \delta)$ of a DFA:
let $q = q_0$
while (there exists another symbol $s$ of the input string)
    $q := \delta(q, s)$;
if $q \in F$ then
    accept
else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_A, f_A, \delta_A)$, the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Practice

- Convert to a DFA

- Convert to an NFA and then to a DFA
 - $(0|1)^*11|0^*$
 - Strings of alternating 0 and 1
 - $aba^*/(ba|b)$

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - $RE \rightarrow NFA$
 - Concatenation, union, closure
 - $NFA \rightarrow DFA$
 - ϵ-closure & subset algorithm

- DFA
 - Minimization, complement
 - Implementation