Lambda Calculus

Programming Language Features

- Many features exist simply for convenience
 - Multi-argument functions: `foo (a, b, c)`
 - Use currying or tuples
 - Loops: `while (a < b) ...`
 - Use recursion
 - Side effects: `a := 1`
 - Use functional programming

- So what language features are really needed?

Turing Completeness

- Computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function
- A programming language is **Turing complete** if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Turing Machine

Infinite Tape

```
1 0 0 0 1 1 1 0 ...
```

Road/Write Head

Control Unit

State: 1
Programming Language Theory

- Come up with a “core” language
 - That’s as small as possible
 - But still Turing complete

- Helps illustrate important
 - Language features
 - Algorithms

- One solution
 - Lambda calculus

Mini C

You only have:
- If statement
- Plus 1
- Minus 1
- Functions

Sum $n = 1+2+3+4+5...n$ in Mini C

```c
int add1(int n){return n+1;}
int sub1(int n){return n-1;}
int add(int a,int b){
  if(b == 0) return a;
  else return add( add1(a),sub1(b));
}
int sum(int n){
  if(n == 1) return 1;
  else return add(n, sum(sub1(n)));
}
int main(){
  printf("%d\n",sum(5));
}
```

Lambda Calculus (λ-calculus)

- Proposed in 1930s by Alonzo Church (born in Washington DC!)
- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics
- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell...

Lambda Expressions

- A lambda calculus expression is defined as

 $$e ::= x \quad \text{variable}$$
 $$\mid \lambda x.e \quad \text{function}$$
 $$\mid e\ e \quad \text{function application}$$

- Note that this is CFG is ambiguous, but that’s not a problem for defining the terms in the language – we are not using it for parsing (i.e., different parse trees = different expressions)

- $\lambda x.e$ is like (fun $x \to e$) in OCaml
- That’s it! Nothing but higher-order functions
Three Conveniences

- "Syntactic sugar" for local declarations
 - let x = e1 in e2 is short for (λx.e2) e1

- Scope of λ extends as far right as possible
 - Subject to scope delimited by parentheses
 - λx. λy.x y is same as λx.(λy.(x y))

- Function application is left-associative
 - x y z is (x y) z
 - Same rule as OCaml

OCaml implementation

type id = string

<table>
<thead>
<tr>
<th>e ::= x</th>
<th>type exp = Var of id</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>λx.e</td>
</tr>
<tr>
<td></td>
<td>e e</td>
</tr>
</tbody>
</table>

```
y Var "y"
λx.x Lam ("x", Var "x")
λx.λy.x y Lam ("x", (Lam ("y", App (Var "x", Var "y")))
(λx.λy.x y) λx.xx App (Lam ("x", Lam ("y", App (Var "x", Var "y")))))
```

Lambda Calculus Semantics

- All we’ve got are functions
 - So all we can do is call them
- To evaluate (λx.e1) e2
 - Evaluate e1 with x replaced by e2
- This application is called beta-reduction
 - (λx.e1) e2 → e1[x:=e2]
 - e1[x:=e2] is e1 with occurrences of x replaced by e2
 - This operation is called substitution
 - Replace formals with actuals
 - Instead of using environment to map formals to actuals
 - We allow reductions to occur anywhere in a term
 - Order reductions are applied does not affect final value!

Beta Reduction Example

```
(λx.λz.x z) y → (λx.(λz.(x z))) y // since λ extends to right
   → (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1[x:=e2]
      → λz.(y z) // where e1 = λz.(x z), e2 = y
```

Equivalent OCaml code

```
(fun x -> (fun z -> (x z))) y → fun z -> (y z)
```
Lambda Calculus Examples

- \((\lambda x.x)z \rightarrow z\)
- \((\lambda x.y)z \rightarrow y\)
- \((\lambda x.y)z \rightarrow zy\)
 - A function that applies its argument to

Lambda Calculus Examples (cont.)

- \((\lambda x.y)(\lambda z.z) \rightarrow (\lambda z.z)y \rightarrow y\)
- \((\lambda x.(\lambda y.x)y)z \rightarrow \lambda y.(\lambda z.zz)y \rightarrow (\lambda z.zz)x \rightarrow xx\)

Static Scoping & Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
 - \((\lambda x.(\lambda x.x))z \rightarrow ?\)
 - The rightmost "x" refers to the second binding
 - This is a function that
 - Takes its argument and applies it to the identity function
 - This function is “the same” as \((\lambda x.(\lambda y.y))\)
 - Renaming bound variables consistently is allowed
 - This is called alpha-renaming or alpha conversion
 - Ex. \(\lambda x.x = \lambda y.y = \lambda z.z\)
 - \(\lambda y.\lambda x.y = \lambda z.\lambda x.z\)

Defining Substitution

- Use recursion on structure of terms
 - \(x[x:=e] = e\) // Replace x by e
 - \(y[x:=e] = y\) // y is different than x, so no effect
 - \((e1\ e2)[x:=e] = (e1[x:=e])\ ((e2[x:=e])\)
 // Substitute both parts of application
 - \((\lambda x.e')[x:=e] = \lambda x.e'\)
 - In \(\lambda x.e'\), the x is a parameter, and thus a local variable that is different from other x’s. Implems static scoping.
 - So the substitution has no effect in this case, since the x being substituted for is different from the parameter x that is in e'
 - \((\lambda y.e')[x:=e] = ?\)
 - The parameter y does not share the same name as x, the variable being substituted for
 - Is \(\lambda y.(e'[x:=e])\) correct? No…
Variable capture

- How about the following?
 - \((\lambda x.\lambda y. x y) y \rightarrow ?\)
 - When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\), as this violates static scoping
 - i.e., \((\lambda x.\lambda y. x y) y \neq \lambda y. y y\)

- Solution
 - \((\lambda x.\lambda y. x y)\) is "the same" as \((\lambda x.\lambda z. x z)\)
 - Due to alpha conversion
 - So alpha-convert \((\lambda x.\lambda y. x y) y\) to \((\lambda x.\lambda z. x z) y\) first
 - Now \((\lambda x.\lambda z. x z) y \rightarrow \lambda z. y z\)

Completing the Definition of Substitution

- Recall: we need to define \((\lambda y.e')[x:=e]\)
 - We want to avoid capturing (free) occurrences of \(y\) in \(e\)
 - Solution: alpha-conversion!
 - Change \(y\) to a variable \(w\) that does not appear in \(e'\) or \(e\)
 - (Such a \(w\) is called fresh)
 - Replace all occurrences of \(y\) in \(e'\) by \(w\).
 - Then replace all occurrences of \(x\) in \(e'\) by \(e\)

- Formally:
 \((\lambda y.e')[x:=e] = \lambda w.((e'[y:=w])[x:=e])(w\text{ is fresh})\)

Beta-Reduction, Again

- Whenever we do a step of beta reduction
 - \((\lambda x.e1)e2 \rightarrow e1[x:=e2]\)
 - We must alpha-convert variables as necessary
 - Usually performed implicitly (w/o showing conversion)

- Examples
 - \((\lambda x.\lambda y. x y) y = (\lambda x.\lambda z. x z) y \rightarrow \lambda z. y z\) // \(y \rightarrow z\)
 - \((\lambda x. (\lambda x.x)) z = (\lambda y. (\lambda x.x)) z \rightarrow z (\lambda x.x)\) // \(x \rightarrow y\)

OCaml Implementation: Substitution

```ocaml
(* substitute e for y in m *)
let rec subst m y e =
  match m with
  | Var x ->
    if y = x then e (* substitute *)
    else m (* don’t subst *) | App (el,e2) ->
    App (subst el y e, subst e2 y e) | Lam (x,e0) -> ...
```

CMS C 330 17

CMS C 330 18

CMS C 330 19

CMS C 330 20
OCaml Impl: Substitution (cont’d)

(* substitute e for y in m *)
let rec subst m y e = match m with …
 | Lam (x,e0) -> if y = x then m
 else if not (List.mem x (fvs e)) then Lam (x, subst e0 y e)
 else let z = newvar() in Lam (z, subst (subst e0 x (Var z)) y e)

OCaml Impl: Reduction

let rec reduce e = match e with
 | App (Lam (x,e), e2) -> subst e x e2
 | App (e1,e2) -> let e1' = reduce e1 in if e1' != e1 then App(e1',e2)
 else App (e1,reduce e2)
 | Lam (x,e) -> Lam (x, reduce e)
 | _ -> e

Encodings

The lambda calculus is Turing complete

Means we can encode any computation we want
 • If we’re sufficiently clever...

Examples
 • Booleans
 • Pairs
 • Natural numbers & arithmetic
 • Looping

Booleans

Church’s encoding of mathematical logic
 • true = λx.λy.x
 • false = λx.λy.y
 • if a then b else c
 Defined to be the λ expression: a b c

Examples
 • if true then b else c = (λx.λy.x) b c → (λy.b) c → b
 • if false then b else c = (λx.λy.y) b c → (λy.y) c → c
Booleans (cont.)

- Other Boolean operations
 - not = λx.((x false) true)
 - not x = if x then false else true
 - not true → (λx.(x false) true) true → ((true false) true) → false
 - and = λx.λy.((x y) false)
 - and x y = if x then y else false
 - or = λx.λy.((x true) y)
 - or x y = if x then true else y
- Given these operations
 - Can build up a logical inference system

Pairs

- Encoding of a pair a, b
 - (a,b) = λx.if x then a else b
 - fst = λf.f true
 - snd = λf.f false
- Examples
 - fst (a,b) = (λ
 - snd (a,b) = (λ

Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - 0 = λf.λy.y
 - 1 = λf.λy.f y
 - 2 = λf.λy.f (f y)
 - 3 = λf.λy.f (f (f y))
 - i.e., n = λf.λy.<apply f n times to y>
 - Formally: n+1 = λf.λy.f (n f y)

Operations On Church Numerals

- Successor
 - succ = λz.λf.λy.f (z f y)
 - 0 = λf.λy.y
 - 1 = λf.λy.f y
- Example
 - succ 0 =
 - (λz.λf.λy.f (z f y)) (λf.λy.y) →
 - λf.λy.((λf.λy.y) f y) →
 - λf.λy.((λy.y) y) → Since (λx.y) z → y
 - λf.λy.f y
 - = 1

(Alonzo Church, of course)
Operations On Church Numerals (cont.)

- IsZero?
 - `iszero = λz. z (λy. false) true`
 - This is equivalent to `λz. ((z (λy. false)) true)`

- Example
 - `iszero 0 =`
 - `(λz. (λy. false) true) (λf. λy. y)` → `true`
 - `(λf. λy. y) (λy. false)` → `true`
 - `(λy. y) true` → Since `(λx. z) y → y` true

Arithmetic Using Church Numerals

- If `M` and `N` are numbers (as λ expressions)
 - Can also encode various arithmetic operations

- Addition
 - `M + N = λf. λy. (M f)((N f) y)`
 - Equivalently: `+ = λM. λN. λf. λy. (M f)((N f) y)`
 - In prefix notation `+ M N`

- Multiplication
 - `M * N = λf. (M (N f))`
 - Equivalently: `* = λM. λN. λf. λy. (M (N f)) y`
 - In prefix notation `* M N`

Arithmetic (cont.)

- Prove `1+1 = 2`
 - `1+1 = λx. λy. ((λf. λy. f y)(1 x) y)`
 - `1 = λf. λy. f y`
 - `2 = λf. λy. f (f y)`

 - `λx. λy. (((λf. λy. f y) x) y)` → `λx. λy. (λy. x y) ((1 x) y)` → `λx. λy. x ((1 x) y)` → `λx. λy. x (((λf. λy. f y) x) y) x)` → `λx. λy. x ((λy. x y) y)` → `λx. λy. x (x y) = 2`

- With these definitions
 - Can build a theory of arithmetic

Looping & Recursion

- Define `D = λx. x x`, then
 - `D D = (λx. x x) (λx. x x)` → `(λx. x x) (λx. x x) = D D`

- So `D D` is an infinite loop
 - In general, self application is how we get looping
The Fixpoint Combinator

\[Y = \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx)) \]

Then

\[YF = (\lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))) F \rightarrow (\lambda x. F(xx)) (\lambda x. F(xx)) \]

\[F((\lambda x. F(xx)) (\lambda x. F(xx))) = F(YF) \]

\[YF \text{ is a fixed point} \text{ (aka “fixpoint”) of F} \]

Thus \(YF = F(YF) = F(F(YF)) = \ldots \)

We can use \(Y \) to achieve recursion for \(F \)

Example

\[\text{fact} = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1)) \]

\[\text{We’ll use } Y\text{ to make this recursively call fact} \]

\[(Y\text{ fact}) 1 = (\text{fact}(Y\text{ fact})) 1 \]

\[\rightarrow \text{if } 1 = 0 \text{ then } 1 \ast (Y\text{ fact} 0) \]

\[\rightarrow 1 \ast (Y\text{ fact} 0) \]

\[\rightarrow 1 \ast (\text{fact}(Y\text{ fact}) 0) \]

\[\rightarrow 1 \ast (\text{if } 0 = 0 \text{ then } 1 \ast 0 \ast (Y\text{ fact} (-1))) \]

\[\rightarrow 1 \ast 1 \rightarrow 1 \]

Discussion

Lambda calculus is Turing-complete

Most powerful language possible

Can represent pretty much anything in “real” language

Using clever encodings

But programs would be

Pretty slow (10000 + 1 \rightarrow thousands of function calls)

Pretty large (10000 + 1 \rightarrow hundreds of lines of code)

Pretty hard to understand (recognize 10000 vs. 9999)

In practice

We use richer, more expressive languages

That include built-in primitives

The Need For Types

Consider the untyped lambda calculus

false = \lambda x.\lambda y.y

0 = \lambda x.\lambda y.y

Since everything is encoded as a function...

We can easily misuse terms...

false 0 \rightarrow \lambda y.y

if 0 then ...

...because everything evaluates to some function

The same thing happens in assembly language

Everything is a machine word (a bunch of bits)

All operations take machine words to machine words
Simply-Typed Lambda Calculus (STLC)

- \(e ::= n \mid x \mid \lambda x : t . e \mid e \; e \)
 - Added integers \(n \) as primitives
 - Need at least two distinct types (integer & function)...
 - ...to have type errors
 - Functions now include the type of their argument

- \(t ::= \text{int} \mid t \rightarrow t \)
 - \(\text{int} \) is the type of integers
 - \(t1 \rightarrow t2 \) is the type of a function
 - That takes arguments of type \(t1 \) and returns result of type \(t2 \)
 - \(t1 \) is the domain and \(t2 \) is the range
 - Notice this is a recursive definition
 - So we can give types to higher-order functions

Types are limiting

- STLC will reject some terms as ill-typed, even if they will not produce a run-time error
 - Cannot type check \(Y \) in STLC
 - Or in Ocaml, for that matter!
 - Surprising theorem: All (well typed) simply-typed lambda calculus terms are strongly normalizing
 - They will terminate
 - Proof is not by straightforward induction
 - Applications “increase” term size

Summary

- Lambda calculus shows issues with
 - Scoping
 - Higher-order functions
 - Types

- Useful for understanding how languages work