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Changes in Version 12.1.0 (February 2016)

This release is intended for Frama-C Magnesium, issued in January 2016.4 For changes in previous versions
we refer to the Appendix A on Page 149.

A main goal of this release is to reduce the number of proof obligations that cannot be verified automatically
and therefore must be tackled by an interactive theorem prover such as Coq. To this end, we analyzed the
proof obligations (often using Coq) and devised additional assertions or ACSL lemmas to guide the auto-
matic provers. Often we succeeded in enabling automatic provers to discharge the concerned obligations.
Specifically, whereas the previous version 11.1.1 of ACSL by Example listed nine proof obligations that
could only be discharged with Coq, the document at hand (version 12.1.0) only counts five such obliga-
tions. Moreover, all these remaining proof obligations are associated to ACSL lemmas, which are usually
easier to tackle with Coq than proof obligations directly related to the C code. The reason for this is that
ACSL lemmas usually have a much smaller set of hypotheses.

Adding assertions and lemmas also helps to alleviate a problem in WP Magnesium and Sodium where
prover processes are not properly terminated.5 Left-over “zombie processes” lead to a deterioration of
machine performance which sometimes results in unpredictable verification results.

List of changes

• mutating algorithms

– simplify annotations of replace_copy and add new algorithm replace

* add predicate Replace to write more compact post conditions and loops invariants

– add several lemmas for predicate Unchanged and use predicate Unchanged in postcondi-
tions of mutating and numeric algorithms

– simplify annotations of reverse

* rename Reversed to Reverse (again) and provide another overloaded version

* add figure to support description of the Reverse predicate

– changes regarding remove_copy

* rename PreserveCount to RetainAllButOne

* rename StableRemove to RemoveMapping

* add statement contracts for both versions of remove_copy such that only ACSL lemmas
require Coq proofs

• numeric algorithms

– define limits VALUE_TYPE_MIN and VALUE_TYPE_MAX
4 See https://frama-c.com/download/frama-c-Magnesium-20151002.tar.gz
5 See https://bts.frama-c.com/view.php?id=2154
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– simplify specification of iota by using new logic function Iota

– simplify implementation of accumulate

* add overloaded predicates AccumulateBounds

* add lemmas AccumulateDefault0, AccumulateDefault1,
AccumulateDefaultNext, and AccumulateDefaultRead

– simplify implementation of inner_product

* add predicates ProductBounds and InnerProductBounds

– enable automatic verification of partial_sum

* add lemmas PartialSumSection, PartialSumUnchanged, PartialSumStep,
and PartialSumStep2 to automatically discharge loop invariants

– enable automatic verification of adjacent_difference

* add logic function Difference and predicate AdjacentDifference

* add predicate AdjacentDifferenceBounds

* add lemmas AdjacentDifferenceStep and AdjacentDifferenceSection to
automatically discharge proof obligation

– add two auxiliary functions partial_sum_inverse and
adjacent_difference_inverse in order to verify that partial_sum
and adjacent_difference are inverse to each other

* add lemmas PartialSumInverse and AdjacentDifferenceInverse to sup-
port the automatic verification of the auxiliary functions

• stack functions

– add lemma StackPushEqual to enable the automatic verification of the well-definition of
stack_push
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Remarks on verification settings

This section gives all settings that depend on the software release of Frama-C, Why3, or one if its employed
provers. For our experiments we used the WP plugin-in of Magnesium release of Frama-C and version
0.86.2 of the Why3 platform.6

Each verification conditions was submitted to the provers CVC4, Z3, Alt-Ergo, and Coq (in that order). The
versions of the provers are listed in the following table.

Prover Version Reference
CVC4 1.4 https://cvc4.cs.nyu.edu/web
Z3 4.4 https://github.com/Z3Prover/z3
Alt-Ergo 0.99.1 http://alt-ergo.lri.fr
Coq 8.4.6 https://coq.inria.fr

Here are the most important options of Frama-C that we used in for almost all functions.

-pp-annot
-no-unicode
-wp
-wp-rte
-wp-model Typed+ref
-wp-timeout 10
-wp-steps 1000
-wp-coq-timeout 10

The only exceptions are the two versions of remove_copy in Sections 6.11 and 6.12, where we addition-
ally used the option -wp-split and increased the time-out to 30 and 40 seconds, respectively.

6 See http://why3.lri.fr
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Foreword

This report provides various examples for the formal specification, implementation, and deductive verifica-
tion of C programs using the ANSI/ISO-C Specification Language (ACSL [1]) and the WP plug-in [2] of
Frama-C [3] (Framework for Modular Analysis of C programs).

We have chosen our examples from the C++ standard library whose initial version is still known as the
Standard Template Library (STL).7 The STL contains a broad collection of generic algorithms that work not
only on C arrays but also on more elaborate container data structures. For the purposes of this document we
have selected representative algorithms, and converted their implementation from C++ function templates
to C functions that work on arrays of type int.8

We will continue to extend and refine this report by describing additional STL algorithms and data struc-
tures. Thus, step by step, this document will evolve from an ACSL tutorial to a report on a formally
specified and deductively verified standard library for ANSI/ISO-C. Moreover, as ACSL is extended to a
C++ specification language, our work may be extended to a deductively verified C++ Standard Library.

You may email suggestions, errors or greetings(!) to

In particular, we encourage you to check vigilantly whether our formal specifications capture the essence
of the informal description of the STL algorithms.

We appreciate your feedback and hope that this document helps foster the adoption of deductive verification
techniques.
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7 See http://www.sgi.com/tech/stl/
8 We are not directly using int in the source code but rather value_type which is a typedef for int.
9 http://www-list.cea.fr/en

10 http://trust-in-soft.com
11 https://www.lri.fr/index_en.php?lang=EN
12 http://www.adacore.com
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1. Introduction

The Framework for Modular Analyses of C, Frama-C [3], is a suite of software tools dedicated to the
analysis of C source code. Its development efforts are conducted and coordinated at two French public
institutions: CEA LIST [4], a laboratory of applied research on software-intensive technologies, and INRIA
Saclay[5], the French National Institute for Research in Computer Science and Control in collaboration
with LRI [6], the Laboratory for Computer Science at Université Paris-Sud.

ACSL (ANSI/ISO-C Specification Language) [1] is a formal language to express behavioral properties of
C programs. This language can specify a wide range of functional properties by adding annotations to the
code. It allows to create function contracts containing preconditions and postconditions. It is possible to
define type and global invariants as well as logic specifications, such as predicates, lemmas, axioms or logic
functions. Furthermore, ACSL allows statement annotations such as assertions or loop annotations.

Within Frama-C, the WP plug-in [2] enables deductive verification of C programs that have been annotated
with ACSL. The WP plug-in uses Hoare-style weakest precondition computations to formally prove ACSL
properties of C code. Verification conditions are generated and submitted to external automatic theorem
provers or interactive proof assistants.

The Verification Group at Fraunhofer FOKUS[7] see the great potential for deductive verification using
ACSL. However, we recognize that for a novice there are challenges to overcome in order to effectively
use the WP plug-in for deductive verification. In order to help users gain confidence, we have written
this tutorial that demonstrates how to write annotations for existing C programs. This document provides
several examples featuring a variety of annotated functions using ACSL. For an in-depth understanding
of ACSL, we strongly recommend users to read the official Frama-C introductory tutorial [8] first. The
principles presented in this paper are also documented in the ACSL reference document [9].

1.1. Structure of this document

The functions presented in this document were selected from the C++ standard library. The original C++ im-
plementation was stripped from its generic implementation and mapped to C arrays of type value_type.

Chapter 2 provides a short introduction into the Hoare Calculus.

We have grouped various standard algorithms algorithms in chapters as follows:

• non-mutating algorithms (Chapter 3)

• maximum/minimum algorithms (Chapter 4)

• binary search algorithms (Chapter 5)

• mutating algorithms (Chapter 6)

• numeric algorithms (Chapter 7)

The order of these chapters reflects their increasing complexity.
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Using the example of a stack, we tackle in Chapter 8 the problem of how a data type and its associated C
functions can be specified with ACSL and automatically verified with Frama-C.

1.2. Types, arrays, ranges and valid indices

This section describe several general conventions and basic definitions we use throughout this document.

1.2.1. Types

In order to keep algorithms and specifications as general as possible, we use abstract type names on almost
all occasions. We currently defined the following types:

typedef int value_type;

typedef unsigned int size_type;

typedef int bool;

Programmers who know the types associated with C++ standard library containers will not be surprised that
value_type refers to the type of values in an array whereas size_type will be used for the indices of
an array.

This approach allows one to modify e.g. an algorithm working on an int array to work on a char array
by changing only one line of code, viz. the typedef of value_type. Moreover, we believe in better
readability as it becomes clear whether a variable is used as an index or as a memory for a copy of an array
element, just by looking at its type.

The latter reason also applies to the use of bool. To denote values of that type, we #defined the identi-
fiers false and true to be 0 and 1, respectively. While any non-zero value is accepted to denote true in
ACSL like in C the algorithms shown in this tutorial will always produce 1 for true. Due to the above def-
initions, the ACSL truth-value constant \false and \true can be used interchangeably with our false
and true, respectively, in ACSL clauses, but not in C code.

1.2.2. Array and ranges

The C Standard describes an array as a “contiguously allocated nonempty set of objects” [10, §6.2.5.20]. If
n is a constant integer expression with a value greater than zero, then

int a[n];

describes an array of type int. In particular, for each i that is greater than or equal to 0 and less than n,
we can dereference the pointer a+i.

Let the following prototype represent a function, whose first argument is the address to a range and whose
second argument is the length of this range.

void example(value_type* a, size_type n);

To be very precise, we have to use the term range instead of array. This is due to the fact, that functions
may be called with empty ranges, i.e., with n == 0. Empty arrays, however, are not permitted according
to the definition stated above. Nevertheless, we often use the term array and range interchangeably.
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1.2.3. Specification of valid ranges in ACSL

The following ACSL fragment expresses the precondition that the function example expects that for each
i, such that 0 <= i < n, the pointer a+i may be safely dereferenced.

/*@
requires 0 <= n;
requires \valid(a+(0.. n-1));

*/
void example(value_type* a, size_type n);

In this case we refer to each index i with 0 <= i < n as a valid index of a.

ACSL’s built-in predicates \valid(a + (0.. n)) and \valid_read(a + (0.. n)) refer to
all addresses a+i where 0 <= i <= n. However, the array notation int a[n] of the C programming
language refers only to the elements a+i where i satisfies 0 <= i < n. Users of ACSL must therefore
use the range notation a+(0.. n-1) in order to express a valid array of length n.
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2. The Hoare calculus

In 1969, C.A.R. Hoare introduced a calculus for formal reasoning about properties of imperative programs
[11], which became known as “Hoare Calculus”.

The basic notion is

//@ assert P;
Q;
//@ assert R;

where P and R denote logical expressions and Q denotes a source-code fragment. Informally, this means

If P holds before the execution of Q, then R will hold after the execution.

Usually, P and R are called precondition and postcondition of Q, respectively. The syntax for logical
expressions is described in [9, Section 2.2] in full detail. For the purposes of this tutorial, the notions shown
in Table 2.1 are sufficient. Note that they closely resemble the logical and relational operators in C.

ACSL syntax Name Reading
!P negation P is not true

P && Q conjunction P is true and Q is true
P || Q disjunction P is true or Q is true
P ==> Q implication if P is true, then Q is true
P <==> Q equivalence if, and only if, P is true, then Q is true
x < y == z relation chain x is less than y and y is equal to z

\forall int x; P(x) universal quantifier P(x) is true for every int value of x
\exists int x; P(x) existential quantifier P(x) is true for some int value of x

Table 2.1.: Some ACSL formula syntax

Here we show three example source-code fragments and annotations.

//@ assert x % 2 == 1;
++x;
//@ assert x % 2 == 0;

If x has an odd value before execution of the
code ++x then x has an even value thereafter.

//@ assert 0 <= x <= y;
++x;
//@ assert 0 <= x <= y + 1;

If the value of x is in the range {0, . . . , y} before
execution of the same code, then x’s value is in
the range {0, . . . , y + 1} after execution.
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//@ assert true;
while (--x != 0)

sum += a[x];
//@ assert x == 0;

Under any circumstances, the value of x is zero
after execution of the loop code.

Any C programmer will confirm that these properties are valid.13 The examples were chosen to demonstrate
also the following issues:

• For a given code fragment, there does not exist one fixed pre- or postcondition. Rather, the choice
of formulas depends on the actual property to be verified, which comes from the application context.
The first two examples share the same code fragment, but have different pre- and postconditions.

• The postcondition need not be the most restricting possible formula that can be derived. In the second
example, it is not an error that we stated only that 0 <= x although we know that even 1 <= x.

• In particular, pre- and postconditions need not contain all variables appearing in the code fragment.
Neither sum nor a[] is referenced in the formulas of the loop example.

• We can use the predicate true to denote the absence of a properly restricting precondition, as we did
before the while loop.

• It is not possible to express by pre- and postconditions that a given piece of code will always termi-
nate. The loop example only states that if the loop terminates, then x == 0 will hold. In fact, if x
has a negative value on entry, the loop will run forever. However, if the loop terminates, x == 0
will hold, and that is what the loop example claims.

Usually, termination issues are dealt with separately from correctness issues. Termination proofs
may, however, refer to properties stated (and verified) using the Hoare Calculus.

Hoare provided the rules shown in Listing 2.2 to 2.12 in order to reason about programs. We will comment
on them in the following sections.

13 We leave the important issues of overflow aside for a moment.
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2.1. The assignment rule

We start with the rule that is probably the least intuitive of all Hoare-Calculus rules, viz. the assignment
rule. It is depicted in Listing 2.2, where

P {x 7→ e}

denotes the result of substituting each occurrence of the variable x in the predicate P by the expression e.

//@ assert P {x |--> e};
x = e;
//@ assert P;

Listing 2.2: The assignment rule

For example, if P is the predicate

x > 0 && a[2*x] == 0

then P {x 7→ y + 1} is the predicate

y+1 > 0 && a[2*(y+1)] == 0

Hence, we get Listing 2.3 as an example instance of the assignment rule. Note that parentheses are required
in the index expression to get the correct 2*(y+1) rather than the faulty 2*y+1.

//@ assert y+1 > 0 && a[2*(y+1)] == 0;
x = y+1;
//@ assert x > 0 && a[2*x] == 0;

Listing 2.3: An assignment rule example instance

Note that after a substitution several different predicates P may result in the same predicate P {x 7→ e}. For
example, after applying the substitution P {x 7→ y + 1} each of the following four predicates

x > 0 && a[2*x] == 0
x > 0 && a[2*(y+1)] == 0

y+1 > 0 && a[2*x] == 0
y+1 > 0 && a[2*(y+1)] == 0

turns into

y+1 > 0 && a[2*(y+1)] == 0

For this reason, the same precondition and statement may result in several different postconditions (All four
above expressions are valid postconditions in Listing 2.3, for example). However, given a postcondition
and a statement, there is only one precondition that corresponds.
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When first confronted with Hoare’s assignment rule, most people are tempted to think of a simpler and
more intuitive alternative, shown in Listing 2.4.

//@ assert P;
x = e;
//@ assert P && x == e;

Listing 2.4: Simpler, but faulty assignment rule

Listings 2.5–2.7 show some example instances of this faulty rule.

//@ assert y > 0;
x = y+1;
//@ assert y > 0 && x == y+1;

Listing 2.5: An example instance of the faulty rule from Listing 2.4

While Listing 2.5 happens to be ok, Listing 2.6 and 2.7 lead to postconditions that are obviously nonsensical
formulas.

//@ assert true;
x = x+1;
//@ assert x == x+1;

Listing 2.6: An example instance of the faulty rule from Listing 2.4

The reason is that in the assignment in Listing 2.6 the left-hand side variable x also appears in the right-hand
side expression e, while the assignment in Listing 2.7 just destroys the property from its precondition.

//@ assert x < 0;
x = 5;
//@ assert x < 0 && x == 5;

Listing 2.7: An example instance of the faulty rule from Listing 2.4

Note that the correct example Listing 2.5 can as well be obtained as an instance of the correct rule from List-
ing 2.2, since replacing x by y+1 in its postcondition yields y > 0 && y+1 == y+1 as precondition,
which is logically equivalent to just y > 0.
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2.2. The sequence rule

The sequence rule, shown in Listing 2.8, combines two code fragments Q and S into a single one Q ; S.
Note that the postcondition for Q must be identical to the precondition of S. This just reflects the sequential
execution (“first do Q, then do S”) on a formal level. Thanks to this rule, we may “annotate” a program
with interspersed formulas, as it is done in Frama-C.

//@ assert P;
Q;
//@ assert R;

and
//@ assert R;
S;
//@ assert T;

{

//@ assert P;
Q ; S;
//@ assert T;

Listing 2.8: The sequence rule

2.3. The implication rule

The implication rule, shown in Listing 2.9, allows us at any time to sharpen a precondition P and to weaken
a postcondition R. More precisely, if we know that P’ ==> P and R ==> R’ then the we can replace the
left contract in of Listing 2.9 by the right one.

//@ assert P;
Q;
//@ assert R;

{

//@ assert P’;
Q;
//@ assert R’;

Listing 2.9: The implication rule
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2.4. The choice rule

The choice rule, depicted in Listing 2.10, is needed to verify conditional statements of the form

if (C) X;
else Y;

Both the then and else branch must establish the same postcondition, viz. S. The implication rule can
be used to weaken differing postconditions S1 of a then-branch and S2 of an else-branch into a unified
postcondition S1 || S2, if necessary. In each branch, we may use what we know about the condition C,
e.g. in the else-branch, that it is false. If the else-branch is missing, it can be considered as consisting of an
empty sequence, having the postcondition P && !C.

//@ assert P && C;
X;
//@ assert S;

and
//@ assert P && !C;
Y;
//@ assert S;

{

//@ assert P;
if (C) X;
else Y;
//@ assert S;

Listing 2.10: The choice rule

Listing 2.11 shows an example application of the choice rule.

//@ assert 0 <= i < n; // given precondition
if (i < n-1) {

//@ assert 0 <= i < n - 1; // using that i < n-1 holds in this branch
//@ assert 1 <= i+1 < n; // by the implication rule
i = i+1;
//@ assert 1 <= i < n; // by the assignment rule
//@ assert 0 <= i < n; // weakened by the implication rule

} else {
//@ assert 0 <= i == n-1 < n; // using that !(i<n-1) holds in else part
//@ assert 0 == 0 && 0 < n; // weakened by the implication rule
i = 0;
//@ assert i == 0 && 0 < n; // by the assignment rule
//@ assert 0 <= i < n; // weakened by the implication rule

}
//@ assert 0 <= i < n; // by the choice rule from both branches

Listing 2.11: An example application of the choice rule

The variable i may be used as an index into a ring buffer int a[n]. The shown code fragment just
advances the index i appropriately. We verified that i remains a valid index into a[] provided it was valid
before. Note the use of the implication rule to establish preconditions for the assignment rule as needed,
and to unify the postconditions of the then and else branches, as required by the choice rule.
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2.5. The loop rule

The loop rule, shown in Listing 2.12, is used to verify a while loop. This requires to find an appropriate
formula, P, which is preserved by each execution of the loop body. P is also called a loop invariant.

//@ assert P && B;
S;
//@ assert P;

{

//@ assert P;
while (B) {

S;
}
//@ assert !B && P;

Listing 2.12: The loop rule

To find it requires some intuition in many cases; for this reason, automatic theorem provers usually have
problems with this task.

As said above, the loop rule does not guarantee that the loop will always eventually terminate. It merely as-
sures us that, if the loop has terminated, the postcondition holds. To emphasis this, the properties verifiable
with the Hoare Calculus are usually called “partial correctness” properties, while properties that include
program termination are called “total correctness” properties.

As an example application, let us consider an abstract ring-buffer. Listing 2.13 shows a verification proof
for the index i lying always within the valid range [0..n-1] during, and after, the loop. It uses the proof
from Listing 2.11 as a sub-part.

//@ assert 0 < n; // given precondition

int i = 0;
//@ assert 0 <= i < n; // by the assignment rule

while (!done) {
//@ assert 0 <= i < n && !done; // may be assumed by the loop rule

a[i] = getchar();
//@ assert 0 <= i < n && !done; // required property of getchar
//@ assert 0 <= i < n; // weakened by the implication rule

i = (i < n-1) ? i+1 : 0;
//@ assert 0 <= i < n; // follows by the choice rule

process(a, i, &done);
//@ assert 0 <= i < n; // required property of process

}
//@ assert 0 <= i < n; // by the loop rule

Listing 2.13: An abstract ring buffer loop
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To reuse the proof from Listing 2.11, we had to drop the conjunct !done, since we didn’t consider it in
Listing 2.11. In general, we may not infer

//@ assert P && S;
Q;
//@ assert R && S;

from
//@ assert P;
Q;
//@ assert R;

since the code fragment Q may just destroy the property S.

This is obvious for Q being the fragment from Listing 2.11, and S being e.g. i != 0.

Suppose for a moment that process had been implemented in a way such that it refuses to set done to
true unless it is false at entry. In this case, we would really need that !done still holds after execution
of Listing 2.11. We would have to do the proof again, looping-through an additional conjunct !done.

We have similar problems to carry the property 0 <= i < n && !done and 0 <= i < n over the
statement a[i] = getchar() and process(a, i, &done), respectively. We need to specify that
neither getchar nor process is allowed to alter the value of i or n. In ACSL, there is a particular
language construct assigns for that purpose, which is introduced in Section 6.2 on Page 72.

In our example, the loop invariant can be established between any two statements of the loop body. How-
ever, this need not be the case in general. The loop rule only requires the invariant holds before the loop
and at the end of the loop body. For example, process could well change the value of i14 and even n
intermediately, as long as it re-establishes the property 0 <= i < n immediately prior to returning.

The loop invariant, 0 <= i < n, is established by the proof in Listing 2.11 also after termination of the
loop. Thus, e.g., a final a[i] = ’\0’ after the loop would be guaranteed not to lead to a bounds violation.

Even if we would need the property 0 <= i < n to hold only immediately before the assignment a
[i] = getchar(), since, e.g., process’s body didn’t use a or i, we would still have to establish
0 <= i < n as a loop invariant by the loop rule, since there is no other way to obtain any property inside
a loop body. Apart from this formal reason it is obvious that 0 <= i < n wouldn’t hold during the
second loop iteration unless we re-established it at the end of the first one, and that is just what the while
rule requires.

14We would have to change the call to process(a, &i, &done) and the implementation of process appropriately. In this
case we couldn’t rely on the above-mentioned assigns clause for process.
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2.6. Derived rules

The above rules do not cover all kinds of statements allowed in C. However, missing C-statements can be
rewritten into a form that is semantically equivalent and covered by the Hoare rules.

For example, if the expression E doesn’t have side-effects, then

switch (E) {
case E1: Q1; break; ...
case En: Qn; break;
default: Q0; break;

}

is semantically equivalent to

if (E == E1) {
Q1;

} else ... if (E == En) {
Qn;

} else {
Q0;

}

While the if-else form is usually slower in terms of execution speed on a real computer, this doesn’t
matter for verification purposes, which are separate from execution issues.

Similarly, a loop statement of the form

for (P; Q; R) {
S;

}

can be re-expressed as

P;
while (Q) {

S;
R;

}

and so on.

It is then possible to derive a Hoare rule for each kind of statement not previously discussed, by applying the
classical rules to the corresponding re-expressed code fragment. However, we do not present these derived
rules here.

Although procedures cannot be re-expressed in the above way if they are (directly or mutually) recursive,
it is still possible to derive Hoare rules for them. This requires the finding of appropriate “procedure
invariants” similar to loop invariants. Non-recursive procedures can, of course, just be inlined to make the
classical Hoare rules applicable.

Note that goto cannot be rewritten in the above way; in fact, programs containing goto statements cannot
be verified with the Hoare Calculus. See [12] for a similar calculus that can deal with arbitrary flowcharts,
and hence arbitrary jumps. In fact, Hoare’s work was based on that calculus. Later calculi inspired from
Hoare’s work have been designed to re-integrate support for arbitrary jumps. However, in this tutorial, we
will not discuss example programs containing a goto.
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3. Non-mutating algorithms

In this chapter, we consider non-mutating algorithms, i.e., algorithms that neither change their arguments
nor any objects outside their scope. This requirement can be formally expressed with the following assigns
clause:

assigns \nothing;

Each algorithm in this chapter therefore uses this assigns clause in its specification.

The specifications of these algorithms are not very complex. Nevertheless, we have tried to arrange them
so that the earlier examples are simpler than the later ones. All algorithms work on one-dimensional arrays.

• equal (Section 3.1 on Page 28) compares two ranges element-by-element. Here, we will present to
versions to specify to specify such a function.

• mismatch (Section 3.2 on Page 32) returns the smallest index where two ranges differ. An imple-
mentation of equal using mismatch is also presented.

• find (Section 3.3 on Page 34) provides sequential or linear search and returns the smallest index at
which a given value occurs in a range. In Section 3.4, on Page 36, a predicate is introduced in order
to simplify the specification.

• find_first_of (Section 3.5, on Page 38) provides similar to find a sequential search, but
unlike find it does not search for a particular value, but for the least index of a given range which
occurs in another range.

• adjacent_find (Section 3.6 on Page 40) can be used to find equal neighbors in an array.

• search (Section 3.7, on Page 42) finds a subsequence that is identical to a given sequence when
compared element-by-element and returns the position of the first occurrence.

• count (Section 3.8, on Page 45) returns the number of occurrences of a given value in a range. Here
we will employ some user-defined axioms to formally specify count.
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3.1. The equal algorithm

The equal algorithm in the C++ Standard Library compares two generic sequences. For our purposes we
have modified the generic implementation15 to that of an array of type value_type. The signature now
reads:

bool equal(const value_type* a, size_type n, const value_type* b);

The function returns true if a[i] == b[i] holds for each 0 <= i < n. Otherwise, equal re-
turns false.

3.1.1. Formal specification of equal

The ACSL specification of equal is shown in Listing 3.1. We discuss the specification now line by line.

/*@
requires \valid_read(a + (0..n-1));
requires \valid_read(b + (0..n-1));

assigns \nothing;

behavior all_equal:
assumes \forall integer i; 0 <= i < n ==> a[i] == b[i];
ensures \result;

behavior some_not_equal:
assumes \exists integer i; 0 <= i < n && a[i] != b[i];
ensures !\result;

complete behaviors;
disjoint behaviors;

*/
bool equal(const value_type* a, size_type n, const value_type* b);

Listing 3.1: Formal specification of equal

The first part of our specification are the preconditions, which must be satisfied before the algorithm is
executed. Those requirements can be specified with the requires-clause in ACSL. In case of the equal
algorithm it is needed that n is non-negative (not specified) and that the pointers a and b point to n contigu-
ously allocated objects of type value_type (see also Section 1.2).

In the second part of our specification we make a statement about objects and arguments that the function
is allowed to change. Since equal is a non-mutating algorithm and does not modify any memory location
outside its scope we just define assigns \nothing (see Page 27).

Finally, we define the postconditions, which must hold after the equal algorithm is finished. Correspond-
ing to the informal description from the STL documentation, we have two behaviors:

The behavior all_equal applies if an element-wise comparison of the two ranges yields that they are all
equal (this is formalized in the first assumes clause. In this case the function equal is expected to return
true; we express this by “ensures \result”. The behavior some_not_equal applies if there is at
least one valid index i where the elements a[i] and b[i] differ (second assumes clause). In this case
the function equal is expected to return false, expressed as “ensures !\result”.

The negation of the formula
15 See http://www.sgi.com/tech/stl/equal.html
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\forall integer i; 0 <= i < n ==> a[i] == b[i];

in behavior all_equal is just the formula

\exists integer i; 0 <= i < n && a[i] != b[i];

in behavior some_not_equal. Therefore, these two behaviors complement each other. Also note that
the variable i is not of type int, but of type integer. While the former type comprises finitely many
(often just 4294967296) distinct numbers available on the target platform hardware, the latter type contains
numbers of arbitrary size, and is allowed only in ACSL specifications. Using type integer becomes a
real issue e.g. in Sect. 7.1.

The complete behaviors-clause in Listing 3.1 expresses the fact that for all ranges a and b that sat-
isfy the preconditions of the contract at least one of the specified named behaviors, in this case all_equal
and some_not_equal, applies.

The disjoint behaviors-clause in Listing 3.1 formalizes the fact that for all ranges a and b that sat-
isfy the preconditions of the contract at most one of the specified named behaviors, in this case all_equal
and some_not_equal, applies.

3.1.2. The EqualRanges predicate

The fact that two arrays a[0]..a[n-1] and b[0]..b[n-1] are equal when compared element by
element, is a property we might need again in other specifications, as it describes a very basic behavior.

The motto don’t repeat yourself is not just good programming practice.16 It is also true for concise and
easy to understand specifications. We will therefore introduce specification elements that we can apply to
the equal algorithm as well as to other specifications and implementations with the described behavior.

In Listing 3.2 we introduce the predicate EqualRanges.

/*@
predicate
EqualRanges{A,B}(value_type* a, integer n, value_type* b) =

\forall integer i; 0 <= i < n ==> \at(a[i], A) == \at(b[i], B);

*/

Listing 3.2: The predicate EqualRanges

This predicate formalizes the fact that the arrays a[0]..a[n-1] and b[0]..b[n-1] are equal when
compared element by element. The letters A and B are labels17 that must be supplied when using the pred-
icate EqualRanges. We use labels in the definition of EqualRanges to extend its applicability. The
expression \at(a[i], A) means that a[i] is evaluated at the label A. Frama-C defines several stan-
dard labels, e.g. Old and Post, a programmer can use to refer to the pre-state or post-state, respectively,
of a function. For more details on labels we refer to the ACSL specification [9, p. 39].

Using this predicate we can reformulate the specification of equal in Listing 3.1 as shown in Listing 3.3.
Here we use the predefined label Here. When used in an ensures clause the label Here refers to the
pre-state of a function.

Note that the equivalence is needed in the ensures clause. Putting an equality instead is not legal in ACSL,
because EqualRanges is a predicate.

16 Compare http://en.wikipedia.org/wiki/Don’t_repeat_yourself
17 Labels are used in C to name the target of the goto jump statement.
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/*@
requires \valid_read(a + (0..n-1));
requires \valid_read(b + (0..n-1));

assigns \nothing;

ensures \result <==> EqualRanges{Here,Here}(a, n, b);

*/
bool equal(const value_type* a, size_type n, const value_type* b);

Listing 3.3: Formal specification of equal using the EqualRanges predicate

3.1.3. Implementation of equal

Listing 3.4 shows one way to implement the function equal. In our description, we concentrate on the
loop annotations.

bool equal(const value_type* a, size_type n, const value_type* b)
{
/*@

loop invariant 0 <= i <= n;
loop invariant \forall integer k; 0 <= k < i ==> a[k] == b[k];
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++) {
if (a[i] != b[i]) {
return false;

}
}

return true;
}

Listing 3.4: Implementation of equal

The first loop invariant is needed to prove that all accesses to a and b occur with valid indices. However,
we may not require simply

loop invariant 0 <= i < n;

since the very last loop iteration would violate this formula. Therefore, we have to weaken the formula
to that shown in the implementation of Listing 3.4, which is preserved by all iterations of the loop. Note
that 0 <= i < n is still valid immediately before the array accesses in, since we may assume there in
addition that the loop condition i < n holds. However, 0 <= i < n is invalid after completion of the
loop, while the loop invariant is guaranteed to hold there, too, cf. the loop rule in Figure 2.12 on Page 23.

Most important is the last loop invariant. It complies with the postcondition of the specification in Listing
3.3 and is needed to prove that for each iteration all elements of a and b up to that iteration step are equal.
The loop assigns-clause in Listing 3.4 expresses that only the loop index is modified in any iteration. This is
in accordance with the fact that equal is a non-mutating algorithm. The loop variant is needed to generate
correct verification conditions for the termination of the for-loop. In order to prove the termination of the
loop, Frama-C needs to know an expression whose value is decreased by each and every loop cycle and
is always positive18[9, Subsections 2.4.2, 2.5.1]. For a for loop as simple as that the expression n-i is

18 Except for possibly the very last iteration.
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sufficient for that purpose. Again, we can use the predicate EqualRanges in order to simplify the second
loop invariant, which complies our postcondition. Listing 3.5 shows the modified implementation using the
predicate EqualRanges.

bool equal(const value_type* a, size_type n, const value_type* b)
{
/*@
loop invariant 0 <= i <= n;
loop invariant EqualRanges{Here,Here}(a, i, b);
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {
if (a[i] != b[i]) {
return false;

}
}

return true;
}

Listing 3.5: Implementation of equal using the EqualRanges predicate
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3.2. The mismatch algorithm

The mismatch algorithm is closely related to the negation of equal from Section 3.1. Its signature reads

size_type mismatch(const value_type* a, int n,
const value_type* b);

The function mismatch returns the smallest index where the two ranges a and b differ. If no such index
exists, that is, if both ranges are equal then mismatch returns the length n of the two ranges.19

3.2.1. Formal specification of mismatch

We use the EqualRanges predicate defined in Listing 3.2 also for the formal specification of mismatch
that is shown in Listing 3.6.

Note in particular the use of EqualRanges in the specification shown in Listing 3.6 in order to express
that mismatch returns the smallest index where the two arrays differ. Note also that the completeness
and disjointedness of the behaviors all_equal and some_not_equal has now become immediately
obvious, since their assumes clauses are just literal negations of each other.

/*@
requires \valid_read(a + (0..n-1));
requires \valid_read(b + (0..n-1));

assigns \nothing;

behavior all_equal:
assumes EqualRanges{Here,Here}(a, n, b);
ensures \result == n;

behavior some_not_equal:
assumes !EqualRanges{Here,Here}(a, n, b);
ensures 0 <= \result < n;
ensures a[\result] != b[\result];
ensures EqualRanges{Here,Here}(a, \result, b);

complete behaviors;
disjoint behaviors;

*/
size_type mismatch(const value_type* a, size_type n,

const value_type* b);

Listing 3.6: Formal specification of mismatch

19 See also http://www.sgi.com/tech/stl/mismatch.html
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3.2.2. Implementation of mismatch

Listing 3.7 shows an implementation of mismatch that we have enriched with some loop annotations to
support the deductive verification.

size_type mismatch(const value_type* a, size_type n,
const value_type* b)

{
/*@
loop invariant 0 <= i <= n;
loop invariant EqualRanges{Here,Here}(a, i, b);
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++) {
if (a[i] != b[i]) {
return i;

}
}

return n;
}

Listing 3.7: Implementation of mismatch

We use the predicate EqualRanges as shown in Listing 3.7 in order to express that all indices k that
are less than the current index i satisfy the condition a[k] == b[k]. This is necessary to prove that
mismatch indeed returns the smallest index where the two ranges differ.

3.2.3. Implementation of equal by calling mismatch

Listing 3.8 shows an implementation of the equal algorithm by a simple call of mismatch.20

bool equal(const value_type* a, size_type n, const value_type* b)
{
return mismatch(a, n, b) == n;

}

Listing 3.8: Implementation of equal with mismatch

20 See also the note on the relationship of equal and mismatch on http://www.sgi.com/tech/stl/equal.html
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3.3. The find algorithm

The find algorithm in the C++ standard library implements sequential search for general sequences.21 We
have modified the generic implementation, which relies heavily on C++ templates, to that of a range of type
value_type. The signature now reads:

size_type find(const value_type* a, size_type n, value_type val);

The function find returns the least valid index i of a where the condition a[i] == val holds. If no
such index exists then find returns the length n of the array.

3.3.1. Formal specification of find

The formal specification of find in ACSL is shown in Listing 3.9.

/*@
requires \valid_read(a + (0..n-1));

assigns \nothing;

behavior some:
assumes \exists integer i; 0 <= i < n && a[i] == val;
ensures 0 <= \result < n;
ensures a[\result] == val;
ensures \forall integer i; 0 <= i < \result ==> a[i] != val;

behavior none:
assumes \forall integer i; 0 <= i < n ==> a[i] != val;
ensures \result == n;

complete behaviors;
disjoint behaviors;

*/
size_type find(const value_type* a, size_type n, value_type val);

Listing 3.9: Formal specification of find

The requires-clause indicates that n is non-negative and that the pointer a points to n contiguously
allocated objects of type value_type (see Section 1.2).

The assigns-clause indicates that find (as a non-mutating algorithm), does not modify any memory
location outside its scope (see Page 27).

We have subdivided the specification of find into two behaviors (named some and none). The behav-
ior some applies if the sought-after value is contained in the array. We express this condition by using
the assumes-clause. The next line expresses that if the assumptions of the behavior are satisfied then
find will return a valid index. The algorithm also ensures that the returned (valid) index i, a[i] ==
val holds. Therefore we define this property in the second postcondition of behavior some. Finally, it
is important to express that find return the smallest index i for which a[i] == val holds (see last
postcondition of behavior some).

The behavior none covers the case that the sought-after value is not contained in the array (see assumes
-clause of behavior none in Listing 3.9). In this case, find must return the length n of the range a.

21 See http://www.sgi.com/tech/stl/find.html
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Note that the formula in the assumes-clause of the behavior some is the negation of the assumes-clause
of the behavior none. Therefore, we can express that these two behaviors are complete and disjoint.

3.3.2. Implementation of find

Listing 3.10 shows a straightforward implementation of find. The only noteworthy elements of this
implementation are the loop annotations.

size_type find(const value_type* a, size_type n, value_type val)
{
/*@
loop invariant 0 <= i <= n;
loop invariant \forall integer k; 0 <= k < i ==> a[k] != val;
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++) {
if (a[i] == val) {
return i;

}
}

return n;
}

Listing 3.10: Implementation of find

The first loop invariant is needed to prove that accesses to a only occur with valid indices. With the second
loop invariant is needed for the proof of the postconditions of the behavior some (see Listing 3.9). It
expresses that for each iteration the sought-after value is not yet found up to that iteration step.

Finally, the loop variant n-i is needed to generate correct verification conditions for the termination of the
loop.
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3.4. The find algorithm reconsidered

In this section we specify the find algorithm in a slightly different way when compared to Section 3.3.
Our approach is motivated by a considerable number of closely related formulas. We have in Listings 3.9
and 3.10 the following formulas

\exists integer i; 0 <= i < n && a[i] == val;
\forall integer i; 0 <= i < \result ==> a[i] != val;
\forall integer i; 0 <= i < n ==> a[i] != val;
\forall integer k; 0 <= k < i ==> a[k] != val;

Note that the first formula is the negation of the third one.

In order to be more explicit about the commonalities of these formulas we define a predicate, called
HasValue (see Listing 3.11), which describes the situation that there is a valid index i such that

a[i] == val

holds.

/*@
predicate

HasValue{A}(value_type* a, integer n, value_type v) =
\exists integer i; 0 <= i < n && a[i] == v;

*/

Listing 3.11: The predicate HasValue

Note that we needed to provide a label, viz. A, to the predicate, since its evaluation depends on a memory
state, viz. then contents of a[]. ACSL allows to abbreviate \at(a[i],A) by a[i] if, as in our predicate
body, A is the only available label.

With this predicate we can encapsulate all uses of the ∀ and ∃ quantifiers in both the specification of the
function contract of find and in the loop annotations. The result is shown in Listings 3.12 and 3.13.

3.4.1. Formal specification of find

This approach leads to a specification of find that is more readable than the one described in Section 3.3.

In particular, it can be seen immediately that the conditions in the assumes clauses of the two behaviors
some and none are mutually exclusive since one is the literal negation of the other. Moreover, the re-
quirement that find returns the smallest index can also be expressed using the HasValue predicate, as
depicted with the last postcondition of behavior some as shown in Listing 3.12.
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/*@
requires \valid_read(a + (0..n-1));

assigns \nothing;

behavior some:
assumes HasValue(a, n, val);
ensures 0 <= \result < n;
ensures a[\result] == val;
ensures !HasValue(a, \result, val);

behavior none:
assumes !HasValue(a, n, val);
ensures \result == n;

complete behaviors;
disjoint behaviors;

*/
size_type find(const value_type* a, size_type n, value_type val);

Listing 3.12: Formal specification of find using the HasValue predicate

3.4.2. Implementation of find

The predicate HasValue is also used in the loop annotation inside the implementation of find.

size_type find(const value_type* a, size_type n, value_type val)
{
/*@
loop invariant 0 <= i <= n;
loop invariant !HasValue(a, i, val);
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++) {
if (a[i] == val) {
return i;

}
}

return n;
}

Listing 3.13: Implementation of find with loop annotations based on HasValue
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3.5. The find_first_of algorithm

The find_first_of algorithm22 is closely related to find (see Sections 3.3 and 3.4).

size_type find_first_of(const value_type* a, size_type m,
const value_type* b, size_type n);

As in find it performs a sequential search. However, whereas find searches for a particular value,
find_first_of returns the least index i such that a[i] is equal to one of the values b[0..n-1].

3.5.1. Formal specification of find_first_of

Similar to our approach in Section 3.4, we define a predicate HasValueOf that formalizes the fact that
there are valid indices i for a and j of b such that a[i] == b[j] hold. We have chosen to reuse the
predicate HasValue (Listing 3.11) to define HasValueOf (Listing 3.14).

/*@
predicate
HasValueOf{A}(value_type* a, integer m, value_type* b, integer n) =

\exists integer i; 0 <= i < m && HasValue{A}(b, n, a[i]);

*/

Listing 3.14: The predicate HasValueOf

Both the predicates HasValueOf and HasValue occur in the formal specification of
find_first_of (see Listing 3.15). Note how similar the specification of
find_first_of becomes to that of find (Listing 3.12) when using these predicates.

/*@
requires \valid_read(a + (0..m-1));
requires \valid_read(b + (0..n-1));

assigns \nothing;

behavior found:
assumes HasValueOf(a, m, b, n);
ensures bound: 0 <= \result < m;
ensures result: HasValue(b, n, a[\result]);
ensures first: !HasValueOf(a, \result, b, n);

behavior not_found:
assumes !HasValueOf(a, m, b, n);
ensures result: \result == m;

complete behaviors;
disjoint behaviors;

*/
size_type find_first_of(const value_type* a, size_type m,

const value_type* b, size_type n);

Listing 3.15: Formal specification of find_first_of

22 See http://www.sgi.com/tech/stl/find_first_of.html
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3.5.2. Implementation of find_first_of

Our implementation of find_first_of is shown in Listing 3.16.

Note the call of the find function shown in the Listing above. In the original implementation23, find_first_of
does not call find but rather inlines it. The reason for this were probably efficiency considerations. We
opted for an implementation of find_first_of that emphasizes reuse. Besides, leading to a more
concise implementation, we also have to write less loop annotations.

size_type find_first_of (const value_type* a, size_type m,
const value_type* b, size_type n)

{
/*@
loop invariant bound: 0 <= i <= m;
loop invariant not_found: !HasValueOf(a, i, b, n);
loop assigns i;
loop variant m-i;

*/
for (size_type i = 0; i < m; i++) {
if (find(b, n, a[i]) < n) {
return i;

}
}

return m;
}

Listing 3.16: Implementation of find_first_of

23 See http://www.sgi.com/tech/stl/stl_algo.h
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3.6. The adjacent_find algorithm

The adjacent_find algorithm24

size_type adjacent_find(const value_type* a, size_type n);

returns the smallest valid index i, such that i+1 is also a valid index and such that

a[i] == a[i+1]

holds. The adjacent_find algorithm returns n if no such index exists.

3.6.1. Formal specification of adjacent_find

As in the case of other search algorithms, we first define a predicate HasEqualNeighbors (see List-
ing 3.17) that captures the essence of finding two adjacent indices at which the array holds equal values.

/*@
predicate

HasEqualNeighbors{A}(value_type* a, integer n) =
\exists integer i; 0 <= i < n-1 && a[i] == a[i+1];

*/

Listing 3.17: The predicate HasEqualNeighbors

/*@
requires \valid_read(a + (0..n-1));

assigns \nothing;

behavior some:
assumes HasEqualNeighbors(a, n);
ensures 0 <= \result < n-1;
ensures a[\result] == a[\result+1];
ensures !HasEqualNeighbors(a, \result);

behavior none:
assumes !HasEqualNeighbors(a, n);
ensures \result == n;

complete behaviors;
disjoint behaviors;

*/
size_type adjacent_find(const value_type* a, size_type n);

Listing 3.18: Formal specification of adjacent_find

We use the predicate HasEqualNeighbors to define the formal specification of adjacent_find (see
Listing 3.18).

24 See http://www.sgi.com/tech/stl/adjacent_find.html
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3.6.2. Implementation of adjacent_find

The implementation of adjacent_find, including loop (in)variants is shown in Listing 3.19. Please note
the use of the predicate HasEqualNeighbors in the loop invariant to match the similar postcondition
of behavior some.

size_type
adjacent_find(const value_type* a, size_type n)
{
if (n == 0) {
return n;

}

/*@
loop invariant 0 <= i < n;
loop invariant !HasEqualNeighbors(a, i+1);
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n - 1; i++) {
if (a[i] == a[i + 1]) {
return i;

}
}

return n;
}

Listing 3.19: Implementation of adjacent_find
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3.7. The search algorithm

The search algorithm in the C++ standard library finds a subsequence that is identical to a given sequence
when compared element-by-element. For our purposes we have modified the generic implementation to that
of an array of type value_type.25 The signature now reads:

size_type search(const value_type* a, size_type m,
const value_type* b, size_type n)

The function search returns the first index i of the array a where the condition a[i+k]==b[k] for
each 0 <= k < n holds (see Figure 3.20). If no such index exists then search returns the length m of
the array a.

result result+n-1result+1

0 1 n-1

a

b b0 ... bn-1b1

b0 ... bn-1b1

Figure 3.20.: Matching b[0..n-1] in a[0..m-1]

3.7.1. Formal specification of search

Our specification of search starts with introducing the predicate HasSubRange in Listing 3.21. This
predicate formalizes the fact that the sequence a contains a subsequence which is identical to the sequence
b.

/*@
predicate

HasSubRange{A}(value_type* a, integer m,
value_type* b, integer n) =

\exists size_type k;
(0 <= k <= m-n) && EqualRanges{A,A}(a+k, n, b);

*/

Listing 3.21: The predicate HasSubRange

25 See http://www.sgi.com/tech/stl/search.html
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The ACSL specification of search is shown in Listing 3.22. The behavior has_match applies if the
sequence a contains a subsequence, which is identical to the sequence b. We express this condition with
assumes by using the predicate HasSubRange.

/*@
requires \valid_read(a + (0..m-1));
requires \valid_read(b + (0..n-1));

assigns \nothing;

ensures (n == 0 || m == 0) ==> \result == 0;

behavior has_match:
assumes HasSubRange(a, m, b, n);
ensures 0 <= \result <= m-n;
ensures EqualRanges{Here,Here}(a+\result, n, b);
ensures !HasSubRange(a, \result+n-1, b, n);

behavior no_match:
assumes !HasSubRange(a, m, b, n);
ensures \result == m;

complete behaviors;
disjoint behaviors;

*/
size_type search(const value_type* a, size_type m,

const value_type* b, size_type n);

Listing 3.22: Formal specification of search

The first ensures clause of behavior has_match indicates that the return value must be in the range [0..
m-n]. The second one expresses that search returns the smallest index where b can be found in a. Fi-
nally, in the last line under behavior has_match we indicate that the sequence a contains a subsequence
(from the position \result), which is identical to the sequence b.

The behavior no_match covers the case that there is no such subsequence in sequence a, which equals to
the sequence b. In this case, search must return the length m of the range a. In any case, if the ranges a
or b are empty, then the return value will be 0. We express this fact with the following line:

ensures (n == 0 || m == 0) ==> \result == 0;

The formula in the assumes clause of the behavior has_match is the negation of the assumes clause of
the behavior no_match. Therefore, we can express that these two behaviors are complete and disjoint.
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3.7.2. Implementation of search

Our implementation of search is shown in Listing 3.23. It follows the C++ standard library implemen-
tation in being easy to understand, but needing an order of magnitude of m*n operations. In contrast, the
sophisticated algorithm from [13] needs only m+n operations.26

size_type search(const value_type* a, size_type m,
const value_type* b, size_type n)

{
if ((n == 0) || (m == 0)) {
return 0;

}

if (n > m) {
return m;

}

/*@
loop invariant 0 <= i <= m-n+1;
loop invariant !HasSubRange(a, n+i-1, b, n);
loop assigns i;
loop variant m-i;

*/
for (size_type i = 0; i <= m - n; i++) {
if (equal(a + i, n, b)) { // Is there a match?
return i;

}
}

return m;
}

Listing 3.23: Implementation of search

The second loop invariant is needed for the proof of the postconditions of the behavior has_match
(see Listing 3.22). It expresses that for each iteration the subsequence, which equals to the sequence b,
is not yet found up to that iteration step.

26 This question has been also discussed by the C++ standardization committee, see http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2014/n3905.html
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3.8. The count algorithm

The count algorithm in the C++ standard library counts the frequency of occurrences for a particular
element in a sequence. For our purposes we have modified the generic implementation27 to that of arrays
of type value_type. The signature now reads:

size_type count(const value_type* a, size_type n, value_type val);

Informally, the function returns the number of occurrences of val in the array a.

3.8.1. An axiomatic definition of counting

The specification of count will be fairly short because it employs the logic function Count whose (con-
siderably) longer definition is given in Listing 3.24.28 We will reuse this axiomatic definition of counting
for the specification of other algorithms, e.g., remove_copy (Section 6.11).

/*@
axiomatic CountAxiomatic
{
logic integer Count{L}(value_type* a, integer n, value_type v)

reads a[0..n-1];

axiom CountEmpty:
\forall value_type *a, v, integer n;
n <= 0 ==> Count(a, n, v) == 0;

axiom CountOneHit:
\forall value_type *a, v, integer n;
a[n] == v ==> Count(a, n + 1, v) == Count(a, n, v) + 1;

axiom CountOneMiss:
\forall value_type *a, v, integer n;
a[n] != v ==> Count(a, n + 1, v) == Count(a, n, v);

axiom CountRead{L1,L2}:
\forall value_type *a, v, integer n;
Unchanged{L1,L2}(a, n) ==>

Count{L1}(a, n, v) == Count{L2}(a, n, v);
}

*/

Listing 3.24: The logic function Count

27 See http://www.sgi.com/tech/stl/count.html
28 This definition of Count is a generalization of the logic function nb_occ of the ACSL specification [9].
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The logic function Count in Listing 3.24 determines the number of occurrences of a value v in the index
range [0..n-1] of an array of type value_type.

• The ACSL keyword axiomatic is used to gather the logic function Count and its defining axioms.
Note that the interval bound n and the return value for Count are of type integer.

• Axiom CountEmpty covers the case of an empty range.

• Axioms CountOneHit and CountOneMiss reduce counting of a range of length n + 1 to a range
of length n.

• The reads clause in the axiomatic definition of Count specifies the set of memory locations on
which Count depends.

Axiom CountRead makes this claim explicit by ensuring that Count produces the same result
if the values a[0..n-1] do not change between two program states indicated by the labels L1
and L2. We use predicate Unchanged (Listing 6.1 in Section 6.1) to express the premise of Axiom
CountRead.

Axiom CountRead is helpful if one has to verify mutating algorithms that are specified with
Count, e.g., remove_copy in Sections 6.11 and 6.12.

The following properties of Count can be verified with the help of the axioms given in Listing 3.24.

/*@
lemma CountOne:

\forall value_type *a, v, integer n;
Count(a, n + 1, v) == Count(a, n, v) + Count(a + n, 1, v);

lemma CountUnion:
\forall value_type *a, v, integer n, k;

0 <= k ==> Count(a, n + k, v) == Count(a, n, v) + Count(a + n, k, v);

lemma CountBounds:
\forall value_type *a, v, integer n;
0 <= n ==> 0 <= Count(a, n, v) <= n;

lemma CountMonotonic:
\forall value_type *a, v, integer m, n;
0 <= m <= n ==> Count(a, m, v) <= Count(a, n, v);

*/

Listing 3.25: Some lemmas for Count
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3.8.2. Formal specification of count

Listing 3.26 shows how we use the logic function count to specify count in ACSL. Note that our specifi-
cation also states that the result of count is non-negative and less than or equal the says of the array.

/*@
requires \valid_read(a + (0..n-1));

assigns \nothing;

ensures \result == Count(a, n, val);
ensures 0 <= \result <= n;

*/
size_type count(const value_type* a, size_type n, value_type val);

Listing 3.26: Formal specification of count

3.8.3. Implementation of count

Listing 3.27 shows a possible implementation of count. Note that we refer to the logic function Count
in one of the loop invariants.

size_type
count(const value_type* a, size_type n, value_type val)
{
size_type counted = 0;

/*@
loop invariant 0 <= i <= n;
loop invariant 0 <= counted <= i;
loop invariant counted == Count(a, i, val);
loop assigns i, counted;
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {
if (a[i] == val) {

counted++;
}

}

return counted;
}

Listing 3.27: Implementation of count
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4. Maximum and minimum algorithms

In this chapter we discuss the formal specification of algorithms that compute the maximum or minimum
values of their arguments. As the algorithms in Chapter 3, they also do not modify any memory locations
outside their scope. The most important new feature of the algorithms in this chapter is that they compare
values using binary operators such as <.

We consider in this chapter the following algorithms.

• max_element (Section 4.2, on Page 52) returns an index to a maximum element in range. Similar
to find it also returns the smallest of all possible indices. An alternative specification which relies
on user-defined predicates will be introduced in Section 4.3, on Page 54).

• max_seq (Section 4.4, on Page 56) is very similar to max_element and will serve as an example
of modular verification. It returns the maximum value itself rather than an index to it.

• min_element which can be used to find the smallest element in an array (Section 4.5).

First, however, we discuss in Section 4.1 general properties that must be satisfied by the relational operators.
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4.1. A note on relational operators

Note that in order to compare values, the algorithms in the C++ standard library usually rely solely on the
less than operator < or special function objects.29 To be precises, the operator < must be a partial order,30

which means that the following rules hold.

irreflexivity ∀x : ¬(x < x)

asymmetry ∀x, y : x < y =⇒ ¬(y < x)

transitivity ∀x, y, z : x < y ∧ y < z =⇒ x < z

If you wish check that the operator < of our value_type31 satisfies this properties you can formulate
lemmas in ACSL and verify them with Frama-C. (see Listing 4.1).

/*@
lemma LessIrreflexivity:

\forall value_type a; !(a < a);

lemma LessAntisymmetry:
\forall value_type a, b; (a < b) ==> !(b < a);

lemma LessTransitivity:
\forall value_type a, b, c; (a < b) && (b < c) ==> (a < c);

*/

Listing 4.1: Requirements for a partial order on value_type

It is of course possible to specify and implement the algorithms of this chapter by only using operator <.
For example, a <= b can be written as a < b| a == b|, or, for our particular ordering on value_type,
as !(b < a). However, for the purpose of this introductory document we have opted for a more user
friendly representation.

Listing 4.2 formulates condition on the semantics of the derived operator >, <= and >=.

/*@
lemma Greater:

\forall value_type a, b; (a > b) <==> (b < a);

lemma LessOrEqual:
\forall value_type a, b; (a <= b) <==> !(b < a);

lemma GreaterOrEqual:
\forall value_type a, b; (a >= b) <==> !(a < b);

*/

Listing 4.2: Semantics of derived comparison operators

29 See http://www.sgi.com/tech/stl/LessThanComparable.html.
30 See http://en.wikipedia.org/wiki/Partially_ordered_set
31 See Section 1.2
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We also provide a group of predicates that concisely express the comparison of the elements in an array
segment with a given value (see Listing 4.3). We will use these predicates both in this chapter and in
Chapter binary-search.

/*@
predicate ConstantRange(value_type* a, integer first,

integer last, value_type val) =
\forall integer i; first <= i < last ==> a[i] == val;

predicate StrictLowerBound(value_type* a, integer first,
integer last, value_type val) =

\forall integer i; first <= i < last ==> val < a[i];

predicate LowerBound(value_type* a, integer first,
integer last, value_type val) =

\forall integer i; first <= i < last ==> !(a[i] < val);

predicate StrictUpperBound(value_type* a, integer first,
integer last, value_type val) =

\forall integer i; first <= i < last ==> a[i] < val;

predicate UpperBound(value_type* a, integer first,
integer last, value_type val) =

\forall integer i; first <= i < last ==> !(val < a[i]);

*/

Listing 4.3: Predicates for comparing array elements with a given value
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4.2. The max_element algorithm

The max_element algorithm in the C++ Standard Template Library32 searches the maximum of a general
sequence. The signature of our version of max_element reads:

size_type max_element(const value_type* a, size_type n);

The function finds the largest element in the range a[0, n). More precisely, it returns the unique valid
index i such that

1. for each index k with 0 <= k < n the condition a[k] <= a[i] holds and

2. for each index k with 0 <= k < i the condition a[k] < a[i] holds.

The return value of max_element is n if and only if there is no maximum, which can only occur if
n == 0.

4.2.1. Formal specification of max_element

A formal specification of max_element in ACSL is shown in Listing 4.4.

/*@
requires \valid_read(a + (..n-1));

assigns \nothing;

behavior empty:
assumes n == 0;
ensures \result == 0;

behavior not_empty:
assumes 0 < n;

ensures 0 <= \result < n;
ensures \forall integer i; 0 <= i < n ==> a[i] <= a[\result];
ensures \forall integer i; 0 <= i < \result ==> a[i] < a[\result];

complete behaviors;
disjoint behaviors;

*/
size_type max_element(const value_type* a, size_type n);

Listing 4.4: Formal specification of max_element

We have subdivided the specification of max_element into two behaviors (empty and not_empty
). The behavior empty contains the specification for the case that the range contains no elements. The
behavior not_empty applies if the range has a positive length.

The second ensures clause of behavior not_empty indicates that the returned valid index k refers to a
maximum value of the array. The third one expresses that k is indeed the first occurrence of a maximum
value in the array.

32 See http://www.sgi.com/tech/stl/max_element.html
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4.2.2. Implementation of max_element

Listing 4.5 shows an implementation of max_element. In our description, we concentrate on the loop
annotations.

size_type max_element(const value_type* a, size_type n)
{
if (n == 0) {
return 0;

}

size_type max = 0;

/*@
loop invariant 0 <= i <= n;
loop invariant 0 <= max < n;
loop invariant \forall integer k; 0 <= k < i ==> a[k] <= a[max];
loop invariant \forall integer k; 0 <= k < max ==> a[k] < a[max];
loop assigns max, i;
loop variant n-i;

*/
for (size_type i = 1; i < n; i++) {
if (a[max] < a[i]) {

max = i;
}

}

return max;
}

Listing 4.5: Implementation of max_element

The second loop invariant is needed to prove the first postcondition of behavior not_empty in Listing 4.4.
Using the next loop invariant we prove the second postcondition of behavior not_empty in Listing 4.4.
Finally, the last postcondition of this behavior can be proved with the endmost loop invariant.
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4.3. The max_element algorithm with predicates

In this section we present another specification of the max_element algorithm. The main difference
is that we employ two user defined predicates. First we define the predicate MaxElement by using the
previously introduced predicate UpperBound (Listing 4.3) by stating that it is an upper bound that belongs
to the sequence a[0..n − 1].

/*@
predicate MaxElement{L}(value_type* a, integer n, integer max) =

0 <= max < n && UpperBound(a, 0, n, a[max]);

*/

Listing 4.6: Definition of the MaxElement predicate

4.3.1. Formal specification of max_element

The new formal specification of max_element in ACSL is shown in Listing 4.7. Note that we also use
the predicate StrictUpperBound (Listing 4.3) in order to express that max_element returns the first
maximum position in [0..n − 1].

/*@
requires \valid_read(a + (0..n-1));

assigns \nothing;

behavior empty:
assumes n == 0;

ensures result: \result == 0;

behavior not_empty:
assumes 0 < n;

ensures result: 0 <= \result < n;
ensures maximum: MaxElement(a, n, \result);
ensures first: StrictUpperBound(a, 0, \result, a[\result]);

complete behaviors;
disjoint behaviors;

*/
size_type max_element(const value_type* a, size_type n);

Listing 4.7: Formal specification of max_element
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4.3.2. Implementation of max_element

Listing 4.8 shows implementation of max_element with rewritten loop invariants. In the loop invari-
ants we also employ the predicates UpperBound and StrictUpperBound that we have used in the
specification.

size_type max_element(const value_type* a, size_type n)
{
if (n == 0) {
return 0;

}

size_type max = 0;

/*@
loop invariant bound: 0 <= i <= n;
loop invariant min: 0 <= max < n;
loop invariant lower: UpperBound(a, 0, i, a[max]);
loop invariant first: StrictUpperBound(a, 0, max, a[max]);

loop assigns max, i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++) {
if (a[max] < a[i]) {

max = i;
}

}

return max;
}

Listing 4.8: Implementation of max_element
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4.4. The max_seq algorithm

In this section we consider the function max_seq (see Chapter 3, [8]) that is very similar to the max_element
function of Section 4.2. The main difference between max_seq and max_element is that max_seq re-
turns the maximum value (not just the index of it). Therefore, it requires a non-empty range as an argument.

Of course, max_seq can easily be implemented using max_element (see Listing 4.10). Moreover,
using only the formal specification of max_element in Listing 4.7 we are also able to deductively verify
the correctness of this implementation. Thus, we have a simple example of modular verification in the
following sense:

Any implementation of max_element that is separately proven to implement the contract
in Listing 4.7 makes max_seq behave correctly. Once the contracts have been defined, the
function max_element could be implemented in parallel, or just after max_seq, without
affecting the verification of max_seq.

4.4.1. Formal specification of max_seq

A formal specification of max_seq in ACSL is shown in Listing 4.9.

/*@
requires n > 0;
requires \valid_read(p + (0..n-1));

assigns \nothing;

ensures \forall integer i; 0 <= i <= n-1 ==> \result >= p[i];
ensures \exists integer e; 0 <= e <= n-1 && \result == p[e];

*/
value_type max_seq(const value_type* p, size_type n);

Listing 4.9: Formal specification of max_seq

Using the first requires-clause we express that max_seq needs a non-empty range as input. By using
the ensures-clause we express our postconditions. They formalize that max_seq indeed returns the
maximum value of the range.
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4.4.2. Implementation of max_seq

Listing 4.10 shows the trivial implementation of max_seq using max_element. Since max_seq re-
quires a non-empty range the call of max_element returns an index to a maximum value in the range.
The fact that max_element returns the smallest index is of no importance in this context.

value_type max_seq(const value_type* p, size_type n)
{
return p[max_element(p, n)];

}

Listing 4.10: Implementation of max_seq
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4.5. The min_element algorithm

The min_element algorithm in the C++ standard library33 searches the minimum in a general sequence.
The signature of our version of min_element reads:

size_type min_element(const value_type* a, size_type n);

The function min_element finds the smallest element in the range a[0..n-1]. More precisely, it
returns the unique valid index i such that The return value of min_element is n if and only if n == 0.
First we define the predicate MinElement by using the previously introduced predicate LowerBound
(Listing 4.3) by stating that it is an lower bound that belongs to the sequence a[0..n − 1].

/*@
predicate MinElement{L}(value_type* a, integer n, integer min) =

0 <= min < n && LowerBound(a, 0, n, a[min]);

*/

Listing 4.11: Definition of the MinElement predicate

4.5.1. Formal specification of min_element

/*@
requires \valid_read(a + (0..n-1));

assigns \nothing;

behavior empty:
assumes n == 0;

ensures result: \result == 0;

behavior not_empty:
assumes 0 < n;

ensures result: 0 <= \result < n;
ensures minimum: MinElement(a, n, \result);
ensures first: StrictLowerBound(a, 0, \result, a[\result]);

complete behaviors;
disjoint behaviors;

*/
size_type min_element(const value_type* a, size_type n);

Listing 4.12: Formal specification of min_element

The ACSL specification of min_element is shown in Listing 4.12. Note that we also use the predicate
StrictLowerBound (Listing 4.3) in order to express that min_element returns the first minimum
position in [0..n − 1].

33 See http://www.sgi.com/tech/stl/min_element.html
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4.5.2. Implementation of min_element

Listing 4.13 shows implementation of min_element with rewritten loop invariants. In the loop invari-
ants we also employ the predicates LowerBound and StrictLowerBound that we have used in the
specification.

size_type min_element(const value_type* a, size_type n)
{
if (0 == n) {
return n;

}

size_type min = 0;

/*@
loop invariant bound: 0 <= i <= n;
loop invariant min: 0 <= min < n;
loop invariant lower: LowerBound(a, 0, i, a[min]);
loop invariant first: StrictLowerBound(a, 0, min, a[min]);

loop assigns min, i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++) {
if (a[i] < a[min]) {

min = i;
}

}

return min;
}

Listing 4.13: Implementation of min_element
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5. Binary search algorithms

In this chapter, we consider the four binary search algorithms of the C++ standard library, namely

• lower_bound in Section 5.1

• upper_bound in Section 5.2

• equal_range in Section 5.3

• binary_search in Section 5.4

All binary search algorithms require that their input array is sorted in ascending order. The predicate
Sorted in Listing 5.1 formalizes these requirements.

/*@
predicate

Sorted{L}(value_type* a, integer n) =
\forall integer i, j; 0 <= i < j < n ==> a[i] <= a[j];

*/

Listing 5.1: The predicate Sorted

As in the case of the of maximum/minimum algorithms from Chapter 4 the binary search algorithms primar-
ily use the less-than operator < (and the derived operators <=, > and >=) to determine whether a particular
value is contained in a sorted range. Thus, different to the find algorithm in Section 3.3, the equality
operator == will play only a supporting part in the specification of binary search.

In order to make the specifications of the binary search algorithms more compact and (arguably) more
readable we use the predicates from Listing 4.3.

61



5.1. The lower_bound algorithm

The lower_bound algorithm is one of the four binary search algorithms of the C++ standard library. For
our purposes we have modified the generic implementation34 to that of an array of type value_type.
The signature now reads:

size_type lower_bound(const value_type* a, size_type n,
value_type val);

As with the other binary search algorithms lower_bound requires that its input array is sorted in as-
cending order. Specifically, lower_bound will return the largest index i with 0 <= i <= n such
that for each index k with 0 <= k < i the condition a[k] < val holds. This specification makes
lower_bound a bit tricky to use as a search algorithm:

• If lower_bound returns n then for each index i with 0 <= i < n holds a[i] < val. Thus,
val is not contained in a.

• If, however, lower_bound returns an index r with 0 <= r < n then we can only be sure that
a[i] < val holds for 0 <= i < r and that val <= a[i] holds for r <= i < n.

5.1.1. Formal specification of lower_bound

The ACSL specification of lower_bound is shown in Listing 5.2.

/*@
requires \valid_read(a + (0..n-1));
requires Sorted(a, n);

assigns \nothing;

ensures result: 0 <= \result <= n;
ensures left: StrictUpperBound(a, 0, \result, val);
ensures right: LowerBound(a, \result, n, val);

*/
size_type
lower_bound(const value_type* a, size_type n, value_type val);

Listing 5.2: Formal specification of lower_bound

• The preconditions express, by using the predicate Sorted, that the values in the (valid) array need
to be sorted in ascending order.

• The postconditions formalize the central properties, mentioned above, of the return value of lower_bound.

34 See http://www.sgi.com/tech/stl/lower_bound.html
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5.1.2. Implementation of lower_bound

Our implementation of lower_bound is shown in Listing 5.3. Each iteration step narrows down the
range that contains the sought-after result. The loop invariants express that in each iteration step all indices
less than the temporary left bound left contain values smaller than val and all indices not less than the
temporary right bound right contain values not smaller than val.

size_type
lower_bound(const value_type* a, size_type n, value_type val)
{
size_type left = 0;
size_type right = n;
size_type middle = 0;

/*@
loop invariant bound: 0 <= left <= right <= n;
loop invariant left: StrictUpperBound(a, 0, left, val);
loop invariant right: LowerBound(a, right, n, val);

loop assigns middle, left, right;
loop variant right - left;

*/
while (left < right) {

middle = left + (right - left) / 2;

if (a[middle] < val) {
left = middle + 1;

} else {
right = middle;

}
}

return left;
}

Listing 5.3: Implementation of lower_bound
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5.2. The upper_bound algorithm

The upper_bound35 algorithm is a version of the binary_search algorithm closely related to lower_bound
of Section 5.1.

The signature reads:

size_type upper_bound(const value_type* a, size_type n,
value_type val)

In contrast to the lower_bound algorithm the upper_bound algorithm locates the largest index i with
0 <= i <= n such that for each index k with 0 <= k < i the condition a[k] <= val holds. This
means:

• If upper_bound returns n then we can only be sure that for each index 0 <= i < n the rela-
tionship a[i] <= val.

• If upper_bound returns an index r with 0 <= r < n then we can be sure that val < a[i]
holds for i where r <= i < n. Thus, if upper_bound returns 0 then we know that val is not
contained in a.

5.2.1. Formal specification of upper_bound

The ACSL specification of upper_bound is shown in Listing 5.4.

/*@
requires \valid_read(a + (0..n-1));
requires Sorted(a, n);

assigns \nothing;

ensures result: 0 <= \result <= n;
ensures left: UpperBound(a, 0, \result, val);
ensures right: StrictLowerBound(a, \result, n, val);

*/
size_type
upper_bound(const value_type* a, size_type n, value_type val);

Listing 5.4: Formal specification of upper_bound

The specification is quite similar to the specification of lower_bound (see Listing 5.2). The difference
can be seen in the postconditions. As we are searching for the upper bound this time, upper_bound has
to ensures that

• all indices less than the returned one belong to elements are less than or equal to val

• all indices greater than or equal to the returned one belong to elements that are greater than val.

35 See http://www.sgi.com/tech/stl/upper_bound.html
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5.2.2. Implementation of upper_bound

Our implementation of upper_bound is shown in Listing 5.5.

The loop invariants express that for each iteration step all indices less than the temporary left bound left
contain values not greater than val and all indices not less than the temporary right bound right contain
values greater than val.

size_type
upper_bound(const value_type* a, size_type n, value_type val)
{
size_type left = 0;
size_type right = n;
size_type middle = 0;

/*@
loop invariant bound: 0 <= left <= right <= n;
loop invariant left: UpperBound(a, 0, left, val);
loop invariant right: StrictLowerBound(a, right, n, val);

loop assigns middle, left, right;
loop variant right - left;

*/
while (left < right) {

middle = left + (right - left) / 2;

if (a[middle] <= val) {
left = middle + 1;

} else {
right = middle;

}
}

return right;
}

Listing 5.5: Implementation of upper_bound
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5.3. The equal_range algorithm

The equal_range algorithm is one of the four binary search algorithms of the C++ standard library. For
our purposes we have modified the generic implementation36 to that of an array of type value_type.
Moreover, instead of a pair of iterators, our version of equal_range returns a pair of indices. To be more
precisely, the return type of equal_range is the struct size_type_pair from Listing 5.6. Thus, the
signature of equal_range now reads:

size_type_pair equal_range(const value_type* a, size_type n,
value_type val);

As with the other binary search algorithms equal_range requires that its input array is sorted in as-
cending order. The specification of equal_range states that it combines the results of the algorithms
lower_bound (Section 5.1) and upper_bound (Section 5.2).

5.3.1. Formal specification of equal_range

The ACSL specification of equal_range is shown in Listing 5.6.

struct spair {
size_type first;
size_type second;

};

typedef struct spair size_type_pair;

/*@
requires \valid_read(a + (0..n-1));
requires Sorted(a, n);

assigns \nothing;

ensures result: 0 <= \result.first <= \result.second <= n;
ensures left: StrictUpperBound(a, 0, \result.first, val);
ensures middle: ConstantRange(a, \result.first,

\result.second, val);
ensures right: StrictLowerBound(a, \result.second, n, val);

*/
size_type_pair
equal_range(const value_type* a, size_type n, value_type val);

Listing 5.6: Formal specification of equal_range

The preconditions express that the values in the (valid) array need to be sorted in ascending order.

The postconditions express that the pair of indices ( f , s) returned by equal_range satisfy the following
properties:

• 0 ≤ f ≤ s ≤ n

• the set of indices [ f , s) =
{
i | f ≤ i < s

}
is the largest set for which a[i] = val holds

36 See http://www.sgi.com/tech/stl/equal_range.html
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5.3.2. Implementation of equal_range

Our implementation of equal_range is shown in Listing 5.7. We call the two functions lower_bound
and upper_bound and return their respective results as a pair. However, instead of doing this straightfor-
ward, we use the auxiliary function make_pair37 and formulate an assertion for its arguments first ≤
second. Using this assertion simplifies the task of automatically proving the postcondition in Listing 5.6.

/*@
assigns \nothing;

ensures \result.first == first;
ensures \result.second == second;

*/
size_type_pair make_pair(size_type first, size_type second)
{
size_type_pair pair;
pair.first = first;
pair.second = second;

return pair;
}

size_type_pair
equal_range(const value_type* a, size_type n, value_type val)
{
size_type first = lower_bound(a, n, val);
size_type second = upper_bound(a, n, val);
//@ assert aux: second < n ==> val < a[second];

return make_pair(first, second);
}

Listing 5.7: Implementation of equal_range

In an earlier version of this document we had proven the similar assertion first <= second with the
interactive theorem prover Coq. After reviewing this proof we formulated the new assertion aux that uses
a fact from the postcondition of upper_bound (Listing 5.4). The benefit of this reformulation is that both
the assertion aux and the postcondition first <= second can now be verified automatically.

37 This functions is modelled after the C++ template function std::make_pair.
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5.4. The binary_search algorithm

The binary_search algorithm is one of the four binary search algorithms of the C++ standard library.
For our purposes we have modified the generic implementation38 to that of an array of type value_type.
The signature now reads:

bool binary_search(const value_type* a, size_type n,
value_type val);

Again, binary_search requires that its input array is sorted in ascending order. It will return true if
there exists an index i in a such that a[i] == val holds.39

5.4.1. Formal specification of binary_search

The ACSL specification of binary_search is shown in Listing 5.8.

/*@
requires \valid_read(a + (0..n-1));
requires Sorted(a, n);

assigns \nothing;

ensures result: \result <==>
\exists integer i; 0 <= i < n && a[i] == val;

*/
bool binary_search(const value_type* a, size_type n, value_type val);

Listing 5.8: Formal specification of binary_search

Note that we can use our previously introduced predicate HasValue (see Page 36) in Listing 5.9. It is inter-
esting to compare this specification with that of find in Listing 3.12. Both find and binary_search
allow to determine whether a value is contained in an array. The fact that the C++ standard library re-
quires that find has linear complexity whereas binary_search must have a logarithmic complexity
can currently not be expressed with ACSL.

/*@
requires \valid_read(a + (0..n-1));
requires Sorted(a, n);

assigns \nothing;

ensures result: \result <==> HasValue(a, n, val);

*/
bool binary_search(const value_type* a, size_type n, value_type val);

Listing 5.9: Formal specification of binary_search using the HasValue predicate

38 See http://www.sgi.com/tech/stl/binary_search.html
39To be more precise: The C++ standard library requires that (a[i] <= val)&& (val <= a[i]) holds. For our definition

of value_type (see Section 1.2) this means that val equals a[i].
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5.4.2. Implementation of binary_search

Our implementation of binary_search is shown in Listing 5.10.

bool binary_search(const value_type* a, size_type n, value_type val)
{
size_type i = lower_bound(a, n, val);
return i < n && a[i] <= val;

}

Listing 5.10: Implementation of binary_search

The function binary_search first calls lower_bound from Section 5.1. Remember that if lower_bound
returns an index 0 <= i < n then we can be sure that val <= a[i] holds.
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6. Mutating algorithms

Let us now turn our attention to another class of algorithms, viz. mutating algorithms, i.e., algorithms that
change one or more ranges. In Frama-C, you can explicitly specify that, e.g., entries in an array a may be
modified by a function f, by including the following assigns clause into the f’s specification:

assigns a[0..length-1];

The expression length-1 refers to the value of length when f is entered, see [9, Section 2.3.2]. Below
are the algorithms we will discuss in this chapter. First, however, we introduce in Section 6.1 the auxiliary
predicate Unchanged.

• swap in Section 6.2 exchanges two values.

• fill in Section 6.3 initializes each element of an array by a given fixed value.

• swap_ranges in Section 6.4 exchanges the contents of the arrays of equal length, element by ele-
ment. We use this example to present “modular verification”, as swap_ranges reuses the verified
properties of swap.

• copy in Section 6.5 copies a source array to a destination array.

• reverse_copy and reverse in Sections 6.6 and 6.7, respectively, reverse an array. Whereas
reverse_copy copies the result to a separate destination array, the reverse algorithm works in
place.

• rotate_copy in Section 6.8 rotates a source array by m positions and copies the results to a desti-
nation array.

• replace_copy and replace in Sections 6.9 and 6.10, respectively, substitute each occurrence
of a value by a given new value. Whereas replace_copy copies the result to a separate array, the
replace algorithm works in place.

• remove_copy copies a source array to a destination array, but omits each occurrence of a given
value. We provide two specifications for remove_copy:

– In Section 6.11 we provide a relatively simple contract that omits, however, an important aspect
of the informal specification

– In Section 6.12 we show how the missing part of the specification can be expressed.
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6.1. The predicate Unchanged

Many of the algorithms in this section iterate sequentially over one or several sequences. For the verification
of such algorithms it is often important to express that a section of an array, or the complete array, have
remained unchanged. In Listing 6.1 we therefore introduce the overloaded predicate Unchanged together
with some simple lemmas. The expression Unchanged{K,L}(a,f,l) is true if the memory area of
a[f..l-1] agrees in states K and L.

/*@
predicate

Unchanged{K,L}(value_type* a, integer first, integer last) =
\forall integer i; first <= i < last ==>

\at(a[i],K) == \at(a[i],L);

predicate
Unchanged{K,L}(value_type* a, integer n) =
Unchanged{K,L}(a, 0, n);

lemma
UnchangedStep{K,L}:
\forall value_type *a, integer n;
0 <= n ==>
Unchanged{K,L}(a, n) ==>
\at(a[n],K) == \at(a[n],L) ==>
Unchanged{K,L}(a, n+1);

lemma
UnchangedSection{K,L}:
\forall value_type *a, integer m, n;
0 <= m <= n ==>
Unchanged{K,L}(a, n) ==>
Unchanged{K,L}(a, m);

*/

Listing 6.1: Predicate Unchanged

6.2. The swap algorithm

The swap algorithm40 in the C++ standard library exchanges the contents of two variables. Similarly, the
iter_swap algorithm41 exchanges the contents referenced by two pointers. Since C and hence ACSL,
does not support an & type constructor (“declarator”), we will present an algorithm that processes pointers
and refer to it as swap.

40 See http://www.sgi.com/tech/stl/swap.html
41 See http://www.sgi.com/tech/stl/iter_swap.html
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6.2.1. Formal specification of swap

The ACSL specification for the swap function is shown in Listing 6.2. The preconditions are formalized
by the requires-clauses which state that both pointer arguments of the swap function must be derefer-
enceable.

/*@
requires \valid(p);
requires \valid(q);

assigns *p;
assigns *q;

ensures *p == \old(*q);
ensures *q == \old(*p);

*/
void swap(value_type* p, value_type* q);

Listing 6.2: Formal specification of swap

The assigns-clauses formalize that the swap algorithm modifies only the entries referenced by the point-
ers p and q. Nothing else may be altered. In general, when more than one assigns clause appears in a
function’s specification, it permitted to modify any of the referenced locations. However, if no assigns
clause appears at all, the function is free to modify any memory location, see [9, Section 2.3.2]. To forbid
a function to do any modifications outside its scope, a clause

assigns \nothing;

must be used, as we practised in the example specifications in Chapter 3.

Upon termination of swap the entries must be mutually exchanged. We can express those postconditions
by using the ensures-clause. The expression \old(*p) refers to the pre-state of the function contract,
whereas by default, a postcondition refers the values after the functions has been terminated.

6.2.2. Implementation of swap

Listing 6.3 shows the usual straight-forward implementation of swap. No interspersed ACSL is needed to
get it verified by Frama-C.

void swap(value_type* p, value_type* q)
{
value_type save = *p;

*p = *q;

*q = save;
}

Listing 6.3: Implementation of swap
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6.3. The fill algorithm

The fill algorithm in the C++ Standard Library initializes general sequences with a particular value. For
our purposes we have modified the generic implementation42 to that of an array of type value_type.
The signature now reads:

void fill(value_type* a, size_type n, value_type val);

6.3.1. Formal specification of fill

Listing 6.4 shows the formal specification of fill in ACSL. We can express the postcondition of fill
simply by using the predicate ConstantRange from Listing 4.3.

/*@
requires valid: \valid(a + (0..n-1));

assigns a[0..n-1];

ensures constant: ConstantRange(a, 0, n, val);

*/
void fill(value_type* a, size_type n, value_type val);

Listing 6.4: Formal specification of fill

42 See http://www.sgi.com/tech/stl/fill.html
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6.3.2. Implementation of fill

Listing 6.5 shows an implementation of fill.

void fill(value_type* a, size_type n, value_type val)
{
/*@
loop invariant bound: 0 <= i <= n;
loop invariant constant: ConstantRange(a, 0, i, val);

loop assigns i, a[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

a[i] = val;
}

}

Listing 6.5: Implementation of fill

The loop invariant bound is necessary to prove that each access to the range a occurs with valid indices.
The loop invariant constant expresses that for each iteration the array is filled with the value of val up to
the index i of the iteration. Note that we use here again the predicate ConstantRange from Listing 4.3.
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6.4. The swap_ranges algorithm

The swap_ranges algorithm43 in the C++ standard library exchanges the contents of two expressed
ranges element-wise. After translating C++ reference types and iterators to C, our version of the original
signature reads:

void swap_ranges(value_type* a, size_type n, value_type* b);

We do not return a value since it would equal n, anyway.

This function refers to the previously discussed algorithm swap. Thus, swap_ranges serves as another
example for “modular verification”. The specification of swap will be automatically integrated into the
proof of swap_ranges.

6.4.1. Formal specification of swap_ranges

Listing 6.6 shows an ACSL specification for the swap_ranges algorithm.

/*@
requires valid_a: \valid(a + (0..n-1));
requires valid_a: \valid(b + (0..n-1));
requires sep: \separated(a+(0..n-1), b+(0..n-1));

assigns a[0..n-1];
assigns b[0..n-1];

ensures equal_a: EqualRanges{Here,Old}(a, n, b);
ensures equal_b: EqualRanges{Old,Here}(a, n, b);

*/
void swap_ranges(value_type* a, size_type n, value_type* b);

Listing 6.6: Formal specification of swap_ranges

The swap_ranges algorithm works correctly only if a and b do not overlap. Because of that fact we use
the separated-clause to tell Frama-C that a and b must not overlap.

With the assigns-clause we postulate that the swap_ranges algorithm alters the elements contained
in two distinct ranges, modifying the corresponding elements and nothing else.

The postconditions of swap_ranges specify that the content of each element in its post-state must equal
the pre-state of its counterpart. We can use the predicate EqualRanges (see Listing 3.2) together with the
label Old and Here to express the postcondition of swap_ranges. In our specification in Listing 6.6,
for example, we specify that the array a in the memory state that corresponds to the label Here is equal
to the array b at the label Old. Since we are specifying a postcondition Here refers to the post-state of
swap_ranges whereas Old refers to the pre-state.

43 See http://www.sgi.com/tech/stl/swap_ranges.html
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6.4.2. Implementation of swap_ranges

Listing 6.7 shows an implementation of swap_ranges together with the necessary loop annotations.

void swap_ranges(value_type* a, size_type n, value_type* b)
{
/*@
loop invariant bound: 0 <= i <= n;
loop invariant equal_a: EqualRanges{Here,Pre}(a, i, b);
loop invariant equal_b: EqualRanges{Here,Pre}(b, i, a);

loop invariant unchanged_a: Unchanged{Here,Pre}(a, i, n);
loop invariant unchanged_b: Unchanged{Here,Pre}(b, i, n);

loop assigns i, a[0..n-1], b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

swap(a + i, b + i);
}

}

Listing 6.7: Implementation of swap_ranges

For the postcondition of the specification in Listing 6.6 to hold, our loop invariants must ensure that at each
iteration all of the corresponding elements that have already been visited are swapped.

Note that there are two additional loop invariants which claim that all the elements that have not visited yet
equal their original values. This a workaround that allows us to prove the postconditions of swap_ranges
despite the fact that the loop assigns is coarser than it should be. The predicate Unchanged from List-
ing 6.1 is used to express this property.
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6.5. The copy algorithm

The copy algorithm in the C++ Standard Library implements a duplication algorithm for general se-
quences. For our purposes we have modified the generic implementation44 to that of a range of type
value_type. The signature now reads:

void copy(const value_type* a, size_type n, value_type* b);

Informally, the function copies every element from the source range a to the destination range b.

6.5.1. Formal specification of copy

The ACSL specification of copy is shown in Listing 6.8. The copy algorithm expects that the ranges a
and b are valid for reading and writing, respectively. Also important is that the ranges do not overlap, this
property is expressed with the separated-clause in our specification.

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));

assigns b[0..n-1];

ensures equal: EqualRanges{Here,Here}(a, n, b);
ensures unchanged: Unchanged{Here,Here}(a, n);

*/
void copy(const value_type* a, const size_type n, value_type* b);

Listing 6.8: Formal specification of copy

Furthermore the function copy assigns the elements from the source range a to the destination range b,
modifying the memory of the elements pointed to by b. Again, we can use the EqualRanges predicate
from Section 3.1 to express that the array a equals b after copy has been called. Nothing else must be
altered. To state this we use the assigns-clause.

Note the similarities in the specifications of copy and swap_ranges (Section 6.4).

44 See http://www.sgi.com/tech/stl/copy.html
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6.5.2. Implementation of copy

Listing 6.9 shows an implementation of the copy function.

void copy(const value_type* a, size_type n, value_type* b)
{
/*@
loop invariant bound: 0 <= i <= n;
loop invariant equal: EqualRanges{Here,Here}(a, i, b);
loop assigns i, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

b[i] = a[i];
}

}

Listing 6.9: Implementation of copy

Here are some remarks on its loop invariants.

For the postcondition to be true, we must ensure that for every element i, the comparison a[i] == b[i]
is true. This can be expressed by using the EqualRanges predicate.

The assigns clause ensures that nothing but the range b[0..i-1] and the loop variable i is modified.
In order to prove the termination of the loop for every possible n we use the loop variant n-i and cover it
with an assertion.
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6.6. The reverse_copy algorithm

The reverse_copy45 algorithm of the C++ Standard Library inverts the order of elements in a sequence.
reverse_copy does not change the input sequence, and copies its result to the output sequence. For
our purposes we have modified the generic implementation to that of a range of type value_type. The
signature now reads:

void reverse_copy(const value_type* a, size_type n, value_type* b);

6.6.1. The predicate Reverse

Informally, reverse_copy copies the elements from the array a into array b such that the copy is a
reverse of the original array. Thus, after calling reverse_copy the following conditions shall be satisfied.

b[0] == a[n-1]
b[1] == a[n-2]
...

...
...

b[n-1] == a[0]

In order to concisely formalize these conditions we define the overloaded predicates Reverse that are
shown in Listing 6.10.

/*@
predicate

Reverse{A,B}(value_type* a, integer n, value_type* b,
integer first, integer last) =

\forall integer k; first <= k < last ==>
\at(a[k], A) == \at(b[n-1-k], B);

predicate
Reverse{A,B}(value_type* a, integer n, value_type* b) =
Reverse{A,B}(a, n, b, 0, n);

predicate
Reverse{A,B}(value_type* a, integer n) = Reverse{A,B}(a, n, a);

*/

Listing 6.10: The predicate Reverse

45 See http://www.sgi.com/tech/stl/reverse_copy.html
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Figure 6.11 graphically represents the first version of predicate Reverse in Listing 6.10. The second
version of Reverse in Listing 6.10 captures the reverse relation between two complete arrays while the
third version is useful when a single array shall be reversed (see Section 6.7).

0 first last n-1

0 n-1-
last

n-1-
first n-1

a

b

Figure 6.11.: Sketch of predicate Reverse

6.6.2. Formal specification of reverse_copy

The ACSL specification of reverse_copy is shown in Listing 6.12. We use the second version of
predicate Reverse from Listing 6.10 in order to formulate the postcondition of reverse_copy.

/*@
requires valid_a: \valid_read(a + (0..n-1));
requires valid_b: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));

assigns b[0..(n-1)];

ensures reverse: Reverse{Here,Here}(a, n, b);
ensures unchanged: Unchanged{Pre,Here}(a, n);

*/
void reverse_copy(const value_type* a, size_type n, value_type* b);

Listing 6.12: Formal specification of reverse_copy
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6.6.3. Implementation of reverse_copy

Listing 6.13 shows an implementation of the reverse_copy function. For the postcondition to be true,
we must ensure that for every element i, the comparison b[i] == a[n-1-i] holds. This is formalized
by the loop invariant reverse where we employ the first version of Reverse from Listing 6.10.

void reverse_copy(const value_type* a, size_type n, value_type* b)
{
/*@

loop invariant bound: 0 <= i <= n;
loop invariant reverse: Reverse{Here,Here}(b, n, a, 0, i);
loop assigns i, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

b[i] = a[n - 1 - i];
}

}

Listing 6.13: Implementation of reverse_copy

6.7. The reverse algorithm

The reverse46 algorithm of the C++ Standard Library inverts the order of elements in a sequence. The
reverse algorithm works in place, meaning that it modifies its input sequence. For our purposes we have
modified the generic implementation to that of a range of type value_type. The signature now reads:

void reverse(value_type* a, size_type n);

6.7.1. Formal specification of reverse

The ACSL specification for the reverse function is shown in listing 6.14. In the postcondition we use
the third version of predicate Reverse from Listing 6.10.

/*@
requires valid: \valid(a + (0..n-1));

assigns a[0..(n-1)];

ensures reverse: Reverse{Here,Old}(a, n);

*/
void reverse(value_type* a, size_type n);

Listing 6.14: Formal specification of reverse

46 See http://www.sgi.com/tech/stl/reverse.html
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6.7.2. Implementation of reverse

Listing 6.15 shows an implementation of the reverse function. Since the reverse algorithm operates
in place we use the swap function from Section 6.2 in order to exchange the elements of the first half of
the array with the corresponding elements of the second half.

void reverse(value_type* a, size_type n)
{
const size_type half = n / 2;

/*@
loop invariant bound: 0 <= i <= half;

loop invariant left: Reverse{Here,Pre}(a, n, a, 0, i);
loop invariant middle: Unchanged{Here,Pre}(a, i, n-i);
loop invariant right: Reverse{Here,Pre}(a, n, a, n-i, n);

loop assigns i, a[0..n-1];
loop variant half - i;

*/
for (size_type i = 0; i < half; ++i) {

swap(&a[i], &a[n - 1 - i]);
}

}

Listing 6.15: Implementation of reverse

We reuse the predicates Reverse (Listing 6.10) and Unchanged (Listing 6.1) in order to write concise
loop invariants.
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6.8. The rotate_copy algorithm

The rotate_copy algorithm in the C++ Standard Library rotates a sequence downwards by m positions
and copies the results to another same-sized sequence. For our purposes we have modified the generic
implementation47 to that of a range of type value_type. The signature now reads:

void rotate_copy(const value_type* a, size_type m,
size_type n, value_type* b);

Informally, the last n-m elements of the array a[0..n-1] are moved m places downwards and stored as
the first n-m elements of the array b[0..n-1], whereas the first m elements of the array a[0..n-1] are
wrapped around and stored as the last m elements of the array b[0..n-1]

n-m n-1

a

b

n-1m

n-m-10

0 m-1

Figure 6.16.: Effects of rotate_copy

Figure 6.16 illustrates the effects of rotate_copy by highlighting how the initial and final segments of
the array a[0..n-1] are mapped to corresponding segments of the array b[0..n-1].

47 See http://www.sgi.com/tech/stl/rotate_copy.html
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6.8.1. Formal specification of rotate_copy

The ACSL specification of rotate_copy is shown in Listing 6.17.

/*@
requires bound: 0 <= m <= n;
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));

assigns b[0..(n-1)];

ensures equal_first: EqualRanges{Here,Here}(a, m, b+(n-m));
ensures equal_last: EqualRanges{Here,Here}(a+m, n-m, b);
ensures unchanged: Unchanged{Old,Here}(a, n);

*/
void rotate_copy(const value_type* a, size_type m, size_type n,

value_type* b);

Listing 6.17: Formal specification of rotate_copy

6.8.2. Implementation of rotate_copy

Listing 6.18 shows an implementation of the rotate_copy function. The implementation simply calls
the function copy twice.

void rotate_copy(const value_type* a, size_type m, size_type n,
value_type* b)

{
copy(a, m, b + (n - m));
copy(a + m, n - m, b);

}

Listing 6.18: Implementation of rotate_copy

85



6.9. The replace_copy algorithm

The replace_copy algorithm of the C++ Standard Library substitutes specific elements from general
sequences. Here, the general implementation48 has been altered to process value_type ranges. The new
signature reads:

size_type replace_copy(const value_type* a, size_type n,
value_type* b,
value_type v, value_type w);

The replace_copy algorithm copies the elements from the range a[0..n] to range b[0..n], sub-
stituting every occurrence of v by w. The return value is the length of the range. As the length of the range
is already a parameter of the function this return value does not contain new information.

6.9.1. The predicate Replace

We start with defining in Listing 6.19 the predicate Replace that describes the intended relationship
between the input array a[0..n-1] and the output array b[0..n-1]. Note the introduction of local
bindings \let ai = ... and \let bi = ... in the definition of Replace (see [9, §2.2]).

/*@
predicate

Replace{K,L}(value_type* a, integer n, value_type* b, value_type v, value_type w)
=

\forall integer i; 0 <= i < n ==>
\let ai = \at(a[i],K); \let bi = \at(b[i],L);

(ai == v ==> bi == w) && (ai != v ==> bi == ai) ;

predicate
Replace{K,L}(value_type* a, integer n, value_type v, value_type w) =
Replace{K,L}(a, n, a, v, w);

*/

Listing 6.19: The predicate Replace

Listing 6.19 also contains a second, overloaded version of Replacewhich we will use for the specification
of the related in-place algorithm replace in Section 6.10.

48 See http://www.sgi.com/tech/stl/replace_copy.html
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6.9.2. Formal specification of replace_copy

Using predicate Replace the ACSL specification of replace_copy is as simple as in Listing 6.20.
Note that we require that the arrays a and b are non-overlapping.

/*@
requires valid_a: \valid_read(a + (0..n-1));
requires valid_b: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));

assigns b[0..n-1];

ensures replace: Replace{Old,Here}(a, n, b, oldv, newv);
ensures unchanged: Unchanged{Old,Here}(a, n);
ensures result: \result == n;

*/
size_type replace_copy(const value_type* a, size_type n,

value_type* b,
value_type oldv, value_type newv);

Listing 6.20: Formal specification of the replace_copy

6.9.3. Implementation of replace_copy

An implementation (including loop annotations) of replace_copy is shown in Listing 6.21. Note how
the structure of the loop annotations resembles the specification of Listing 6.20.

size_type replace_copy(const value_type* a, size_type n,
value_type* b,
value_type oldv, value_type newv)

{
/*@
loop invariant bounds: 0 <= i <= n;
loop invariant replace: Replace{Pre,Here}(a, i, b, oldv, newv);
loop assigns i, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

b[i] = (a[i] == oldv ? newv : a[i]);
}

return n;
}

Listing 6.21: Implementation of the replace_copy algorithm
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6.10. The replace algorithm

The replace algorithm of the C++ Standard Library substitutes specific values in a general sequence.
Here, the general implementation49 has been altered to process value_type ranges. The new signature
reads

void replace(value_type* a, size_type n, value_type oldv, value_type newv);

The replace algorithm substitutes all elements from the range a[0..n-1] that equal oldv by newv.

6.10.1. Formal specification of replace

Using the second predicate Replace from Listing 6.19 the ACSL specification of replace can be ex-
pressed as in Listing 6.22.

/*@
requires valid: \valid(a + (0..n-1));

assigns a[0..n-1];

ensures replace: Replace{Old,Here}(a, n, oldv, newv);

*/
void replace(value_type* a, size_type n, value_type oldv, value_type newv);

Listing 6.22: Formal specification of the replace

49 See http://www.sgi.com/tech/stl/replace.html
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6.10.2. Implementation of replace

An implementation of replace is shown in Listing 6.23. The loop invariant unchanged expresses that
when entering iteration i the elements a[i..n-1] have not yet changed.

void replace(value_type* a, size_type n, value_type oldv, value_type newv)
{
/*@
loop invariant bounds: 0 <= i <= n;
loop invariant replace: Replace{Pre,Here}(a, i, oldv, newv);
loop invariant unchanged: Unchanged{Pre,Here}(a, i, n);
loop assigns i, a[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {
if (a[i] == oldv) {

a[i] = newv;
}

}
}

Listing 6.23: Implementation of the replace algorithm
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6.11. The remove_copy algorithm

The remove_copy algorithm of the C++ Standard Library copies all elements of a sequence other than
a given value. Here, the general implementation has been altered to process value_type ranges.50 The
new signature reads:

size_type remove_copy(const value_type* a, size_type n,
value_type* b, value_type v);

The most important facts of this algorithms are:

1. The return value is the length of the resulting range.

2. The remove_copy algorithm copies elements that are not equal to v from range a[0..n-1] to
the range b[0..\result-1].

3. The algorithm is stable, that is, the relative order of the elements in b is the same as in a.

v a v v a v c d v eb

a a c d eb

a

b

Figure 6.24.: Effects of remove_copy

Figure 6.24 shows how remove_copy is supposed to copy elements that differ from v from range a to b.

6.11.1. The predicate RetainAllButOne

In order to achieve a concise specification we introduce the auxiliary predicate RetainAllButOne (see
Listing 6.25). The expression RetainAllButOne(a,m,b,n,v) is true if range a[0..n-1] contains
the same elements as b[0..m-1], except possibly for occurrences of v; the elements’ order may differ in
a and b.

/*@
predicate

RetainAllButOne(value_type* a, integer m,
value_type* b, integer n, value_type v) =

\forall value_type x;
x != v ==> Count(a, m, x) == Count(b, n, x);

*/

Listing 6.25: The predicate RetainAllButOne

50 See http://www.sgi.com/tech/stl/remove_copy.html
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6.11.2. Formal specification of remove_copy

Listing 6.26 now shows our first attempt to specify remove_copy.

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b+(0..n-1));

assigns b[0..(n-1)];

ensures bound: 0 <= \result <= n;
ensures result: \result == n - Count(a, n, v);
ensures retain: RetainAllButOne(a, n, b, \result, v);
ensures discard: !HasValue(b, \result, v);
ensures unchanged: Unchanged{Here,Old}(b, \result, n);
ensures unchanged: Unchanged{Here,Old}(a, n);

*/
size_type remove_copy(const value_type* a, size_type n,

value_type* b, value_type v);

Listing 6.26: Formal specification of remove_copy

• We use the predicate RetainAllButOne in order to express that the number of elements different
from v is the same in the source and target range.

Note that this property does not guarantee the stability of remove_copy because given e.g. a range
{1, 0, 5, 2, 0, 5} and the value v=0 the expected result of remove_copy is the range {1, 5, 2, 5}.
However, since Count is invariant under permutations the specification in Listing 6.26 would also
allow e.g. the result {5, 5, 1, 2}. In Section 6.12 we will discuss how the stability of remove_copy
can be captured in an ACSL specification.

• The predicate Unchanged from Listing 6.1 is used to express that remove_copy does neither
change b[\result..n-1] nor a[0..n-1].

• Note the re-use of predicate HasValue (Listing 3.11) to express that the target range does not
contain the value v.
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6.11.3. Implementation of remove_copy

An implementation of remove_copy is shown in Listing 6.27.

size_type remove_copy(const value_type* a, size_type n,
value_type* b, value_type v)

{
size_type j = 0;

/*@
loop invariant bound: 0 <= j <= i <= n;
loop invariant result: j == i - Count(a, i, v);
loop invariant retain: RetainAllButOne(a, i, b, j, v);
loop invariant discard: !HasValue(b, j, v);
loop invariant unchanged: Unchanged{Here,Pre}(b, j, n);

loop assigns i, j, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

/*@
requires discard: !HasValue(b, j, v);
requires bound: 0 <= j <= i < n;
assigns j, b[j];
ensures bound: 0 <= j <= i+1 <= n;
ensures result: j == i+1 - Count(a, i+1, v);
ensures discard: !HasValue(b, \old(j), v);
ensures retain: RetainAllButOne(a, i+1, b, j, v);
ensures unchanged: Unchanged{Here,Pre}(b, j, n);

behavior not_equal:
assumes a[i] != v;
assigns j, b[j];
ensures discard: j == \old(j) + 1;
ensures discard: b[\old(j)] == a[i];
ensures discard: b[\old(j)] != v;
ensures discard: !HasValue(b, \old(j), v);
ensures retain: RetainAllButOne(a, i+1, b, j, v);

behavior equal:
assumes a[i] == v;
assigns \nothing;
ensures discard: !HasValue(b, j, v);
ensures retain: RetainAllButOne(a, i+1, b, j, v);

complete behaviors;
disjoint behaviors;

*/
if (a[i] != v) {

b[j++] = a[i];
}
//@ assert retain: a[i] != v ==> RetainAllButOne(a, i+1, b, j, v);
//@ assert discard: a[i] != v ==> b[j-1] != v;
//@ assert discard: a[i] != v ==> !HasValue(b, j, v);

}

return j;
}

Listing 6.27: Implementation of remove_copy
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Not surprisingly, the logical function Count and the predicates RetainAllButOne, HasValue, and
Unchanged also appear in the loop invariants of remove_copy. In order to automatically discharge the
various loop invariants we introduce a (fairly large) statement contract (cf. [9, § 2.4.4]) for the if-statement
in remove_copy together with some assertions.

The verification also relies on the Lemma RetainAllButOneMiss, shown in Listing 6.28. It gives a
sufficient condition to infer RetainAllButOne{L}(a,m+1,b,n+1,v) from RetainAllButOne
{K}(a,m,b,n,v).

/*@
lemma RetainAllButOneMiss{K,L}:
\forall value_type *a, *b, v, integer m, n;

RetainAllButOne{K}(a, m, b, n, v) ==>
\at(a[m],K) != v ==>
\at(a[m],L) == \at(b[n],L) ==>
Unchanged{K,L}(a,m+1) ==>
Unchanged{K,L}(b,n) ==>
RetainAllButOne{L}(a, m+1, b, n+1, v);

*/

Listing 6.28: A lemma for RetainAllButOne
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6.12. Capturing the stability of remove_copy

In this section, we have a closer look at the stability of remove_copy and its expression in the ACSL
language.

Figure 6.29 shows, with respect to array indices, how the elements different from v “slide” to smaller or
equal positions. The main observation here is that an element slides as many positions down as there are
occurrences of v below it.

v a v v a v c d v eb

0 1 2 3 6 74 5 8 9 10

0 1 2 3 6 74 5 8 9 10

a a c d ebb

a

Figure 6.29.: Stability of remove_copy with respect to indices

As it turns out, it is relatively easy to express this property using the previously introduced logic function
Count (see Listing 3.24 in Section 3.8). We simply define in Listing 6.30 a logic function RemoveCount
which subtracts from every position i the number of occurrences of v below i. In addition, we provide
four lemmas that easily follow from corresponding properties of Count, but are needed for the verification.

/*@
logic

integer RemoveCount{L}(value_type* a, integer i, value_type v) =
i - Count{L}(a, i, v);

lemma RemoveCountEmpty:
\forall value_type *a, v, integer i;

i <= 0 ==> RemoveCount(a, i, v) == i;

lemma RemoveCountHit:
\forall value_type *a, v, integer i; a[i] == v ==>

RemoveCount(a, i+1, v) == RemoveCount(a, i, v);

lemma RemoveCountMiss:
\forall value_type *a, v, integer i; a[i] != v ==>

RemoveCount(a, i+1, v) == RemoveCount(a, i, v) + 1;

lemma RemoveCountRead{L1,L2}:
\forall value_type *a, v, integer i; Unchanged{L1,L2}(a, i) ==>

RemoveCount{L1}(a, i, v) == RemoveCount{L2}(a, i, v);

*/

Listing 6.30: The logic function RemoveCount

The value RemoveCount(a, v, i) equals the number of elements of a[0..i-1] that are copied to
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the destination range b[0..n-1] by remove_copy.

The stability of remove_copy depends, strictly speaking, on monotonicity properties of RemoveCount.
Listing 6.31 formulates two lemmas that describe such properties. These lemmas, whose verification de-
pends on the lemmas for Count from Listing 3.25, will play an important role in the formal verification of
this version of remove_copy.

/*@
lemma RemoveCountMonotonic:
\forall value_type *a, v, integer m, n; 0 <= m <= n ==>

RemoveCount(a, m, v) <= RemoveCount(a, n, v);

lemma RemoveCountStrictlyMonotonic:
\forall value_type *a, v, integer m, n; 0 <= m < n ==>

a[m] != v ==> RemoveCount(a, m, v) < RemoveCount(a, n, v);

*/

Listing 6.31: Additional lemmas for RemoveCount

Also, note that RemoveCount is defined for all integers, including those indices i where a[i] equals v
(see the dashed lines in Figure 6.29). In the specification of remove_copy we will, however, only use
RemoveCount for indices where a[i] is different from v. This can be seen in the definition of predicate
RemoveMapping (Listing 6.32) that uses RemoveCount to formally capture the stability with respect
to corresponding elements of the source and target ranges.

/*@
predicate
RemoveMapping{L}(value_type* a, integer n, value_type* b, value_type v) =

\forall integer i; 0 <= i < n ==>
a[i] != v ==> b[RemoveCount(a, i, v)] == a[i];

*/

Listing 6.32: The predicate RemoveMapping
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6.12.1. Formal specification of remove_copy

Listing 6.33 shows an improved specification of remove_copy that also captures the required stability.

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b+(0..n-1));

assigns b[0..(n-1)];

ensures bound: 0 <= \result <= n;
ensures result: \result == RemoveCount(a, n, v);
ensures retain: RetainAllButOne(a, n, b, \result, v);
ensures discard: !HasValue(b, \result, v);
ensures stable: RemoveMapping(a, n, b, v);
ensures unchanged: Unchanged{Here,Old}(b, \result, n);
ensures unchanged: Unchanged{Here,Old}(a, n);

*/
size_type remove_copy(const value_type* a, size_type n,

value_type* b, value_type v);

Listing 6.33: Improved formal specification of remove_copy

This specification of RemoveCount differs from the one in Listing 6.26 in the following points.

1. We now use RemoveCount in order to specify the expected return value in postcondition result.

2. We use RemoveMapping in the new postcondition stable. Here we exactly specify to which
element in the output range b[0..n-1] an element of the input range a[0..n-1], that is different
from v, is copied.

Properties bound, retain, and discard are redundant.

6.12.2. Implementation of remove_copy

Listing 6.34 shows the additional loop annotations, assertions and statement contract that were necessary
to verify the stronger specification of remove_copy.

In order to prove the additional loop invariant stable we rely also on the monotonicity properties of
RemoveCount in Listing 6.31

96



size_type remove_copy(const value_type* a, size_type n,
value_type* b, value_type v)

{
size_type j = 0;

/*@
loop invariant bound: 0 <= j <= i <= n;
loop invariant result: j == RemoveCount(a, i, v);
loop invariant retain: RetainAllButOne(a, i, b, j, v);
loop invariant discard: !HasValue(b, j, v);
loop invariant stable: RemoveMapping(a, i, b, v);
loop invariant unchanged: Unchanged{Here,Pre}(b, j, n);
loop invariant unchanged: Unchanged{Here,Pre}(a, n);

loop assigns i, j, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

/*@
requires discard: !HasValue(b, j, v);
requires bound: 0 <= j <= i < n;
assigns j, b[j];
ensures bound: 0 <= j <= i+1 <= n;
ensures result: j == RemoveCount(a, i+1, v);
ensures discard: !HasValue(b, \old(j), v);
ensures retain: RetainAllButOne(a, i+1, b, j, v);
ensures stable: RemoveMapping(a, i+1, b, v);
ensures unchanged: Unchanged{Here,Pre}(b, j, n);

behavior not_equal:
assumes a[i] != v;
assigns j, b[j];
ensures discard: j == \old(j) + 1;
ensures discard: b[\old(j)] == a[i];
ensures discard: b[\old(j)] != v;
ensures discard: !HasValue(b, \old(j), v);
ensures retain: RetainAllButOne(a, i+1, b, j, v);
ensures stable: RemoveMapping(a, i+1, b, v);

behavior equal:
assumes a[i] == v;
assigns \nothing;
ensures discard: !HasValue(b, j, v);
ensures retain: RetainAllButOne(a, i+1, b, j, v);
ensures stable: RemoveMapping(a, i+1, b, v);

complete behaviors;
disjoint behaviors;

*/
if (a[i] != v) {

b[j++] = a[i];
}
//@ assert retain: a[i] != v ==> RetainAllButOne(a, i+1, b, j, v);
//@ assert discard: a[i] != v ==> b[j-1] != v;
//@ assert discard: a[i] != v ==> !HasValue(b, j, v);
//@ assert stable: a[i] != v ==> j == RemoveCount(a, i, v) + 1;

}

return j;
}

Listing 6.34: Implementation of remove_copy with additional loop invariants
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7. Numeric algorithms

The algorithms that we considered so far only compared, read or copied values in sequences. In this chapter,
we consider so-called numeric algorithms of the C++ standard library that use arithmetic operations on
value_type to combine the elements of sequences.

In order to refer to potential arithmetic overflows we introduce the two constants

#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN

Listing 7.1: Limits of value_type

which refer to the numeric limits of value_type (see also Section 1.2.1).

We consider the following algorithms.

• iota writes sequentially increasing values into a range (Section 7.1 on Page 100)

• accumulate computes the sum of the elements in a range (Section 7.2 on Page 102)

• inner_product computes the inner product of two ranges (Section 7.3 on Page 106)

• partial_sum computes the sequence of partial sums of a range (Section 7.4 on Page 109)

• adjacent_difference computes the differences of adjacent elements in a range (Section 7.5
on Page 113)

The formal specifications of these algorithms raise new questions. In particular, we now have to deal with
arithmetic overflows in value_type.
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7.1. The iota algorithm

The iota algorithm in the C++ standard library assigns sequentially increasing values to a range, where
the initial value is user-defined. Our version of the original signature51 reads:

void iota(value_type* a, size_type n, value_type val);

Starting at val, the function assigns consecutive integers to the elements of the range a. When specifying
iota we must be careful to deal with possible overflows of the argument val.

7.1.1. Formal specification of iota

The specification of iota relies on the logic function Iota that is defined in Listing 7.2.

/*@
predicate
Iota(value_type* a, integer n, value_type v) =
\forall integer i; 0 <= i < n ==> a[i] == v + i;

*/

Listing 7.2: Logic function Iota

The ACSL specification of iota is shown in Listing 7.3. It uses the logic function Iota in order to express
the postcondition increment.

/*@
requires valid: \valid(a + (0..n-1));
requires limit: val + n <= VALUE_TYPE_MAX;

assigns a[0..n-1];

ensures increment: Iota(a, n, val);

*/
void iota(value_type* a, size_type n, value_type val);

Listing 7.3: Formal specification of iota

The specification of iota refers to VALUE_TYPE_MAX which is the maximum value of the underlying
integer type (see Listing 7.1). In order to avoid integer overflows the sum val+n must not be greater than
the constant VALUE_TYPE_MAX.

51 See http://www.sgi.com/tech/stl/iota.html

100

http://www.sgi.com/tech/stl/iota.html


7.1.2. Implementation of iota

Listing 7.4 shows an implementation of the iota function.

void iota(value_type* a, size_type n, value_type val)
{
/*@
loop invariant bound: 0 <= i <= n;
loop invariant limit: val == \at(val, Pre) + i;
loop invariant increment: Iota(a, i, \at(val, Pre));

loop assigns i, val, a[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

a[i] = val++;
}

}

Listing 7.4: Implementation of iota

The loop invariant increment describes that in each iteration of the loop the current value val is equal
to the sum of the value val in state of function entry and the loop index i. We have to refer here to
\at(val,Pre) which is the value on entering iota.
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7.2. The accumulate algorithm

The accumulate algorithm in the C++ standard library computes the sum of an given initial value and
the elements in a range. Our version of the original signature52 reads:

value_type
accumulate(const value_type* a, size_type n, value_type init);

The result of accumulate shall equal the value

init +

n−1∑
i=0

a[i]

This implies that accumulate will return init for an empty range.

7.2.1. Axiomatic definition of accumulating over an array

As in the case of count (see Section 3.8) we specify accumulate by first defining a logic function
Accumulate that formally defines the summation of elements in an array.

/*@
axiomatic AccumulateAxiomatic
{

logic value_type Accumulate{L}(value_type* a, integer n,
value_type init) reads a[0..n-1];

axiom AccumulateEmpty:
\forall value_type *a, init, integer n;

n <= 0 ==> Accumulate(a, n, init) == init;

axiom AccumulateNext:
\forall value_type *a, init, integer n;

n >= 0 ==>
Accumulate(a, n+1, init) == Accumulate(a, n, init) + a[n];

axiom AccumulateRead{L1,L2}:
\forall value_type *a, init, integer n;

Unchanged{L1,L2}(a, n) ==>
Accumulate{L1}(a, n, init) == Accumulate{L2}(a, n, init);

}

*/

Listing 7.5: The logic function Accumulate

With this definition the following equation holds

Accumulate(a, n + 1, init) = init +

n∑
i=0

a[i] (7.1)

Both the reads clause and the axiom AccumulateRead in Listing 7.5 express that the result of Accumulate
only depends on the values of a[0..n-1].

52 See http://www.sgi.com/tech/stl/accumulate.html
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Listing 7.6 shows an overloaded version of Accumulate that uses 0 as default value of init. Included in
this listing is also a property corresponding to axiom AccumulateNext from Listing 7.5, here given as
a lemma. We will use this version for the specification of the algorithm partial_sum (see Section 7.4).

Thus, for the overloaded version of Accumulate we have

Accumulate(a, n + 1) =

n∑
i=0

a[i] (7.2)

/*@
logic value_type Accumulate{L}(value_type* a, integer n) =
Accumulate{L}(a, n, (value_type) 0);

lemma AccumulateDefault0{L}:
\forall value_type* a;

Accumulate(a, 0) == 0;

lemma AccumulateDefault1{L}:
\forall value_type* a;

Accumulate(a, 1) == a[0];

lemma AccumulateDefaultNext{L}:
\forall value_type* a, integer n;

n >= 0 ==> Accumulate(a, n+1) == Accumulate(a, n) + a[n];

lemma AccumulateDefaultRead{L1,L2}:
\forall value_type *a, integer n;

Unchanged{L1,L2}(a, n) ==>
Accumulate{L1}(a, n) == Accumulate{L2}(a, n);

*/

Listing 7.6: An overloaded version of Accumulate
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7.2.2. Preventing numeric overflows for accumulate

Before we present our formal specification of accumulate we introduce in Listing 7.7 a predicate
AccumulateBounds that we will subsequently use in order to compactly express requirements that
exclude numeric overflows while accumulating value.

/*@
predicate

AccumulateBounds{L}(value_type* a, integer n, value_type init) =
\forall integer i; 0 <= i <= n ==>
VALUE_TYPE_MIN <= Accumulate(a, i, init) <= VALUE_TYPE_MAX;

predicate
AccumulateBounds{L}(value_type* a, integer n) =
AccumulateBounds{L}(a, n, (value_type) 0);

*/

Listing 7.7: The overloaded predicate AccumulateBounds

Predicate AccumulateBounds expresses that for 0 ≤ i < n the partial sums

init +

i∑
k=0

a[k] (7.3)

do not overflow. If one of them did, one couldn’t guarantee that the result of accumulate equals the
mathematical description of Accumulate.

Note that we also provide a second (overloaded) version of AccumulateBounds which uses a default
value 0 for init.
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7.2.3. Formal specification of accumulate

Using the logic function Accumulate and the predicate AccumulateBounds, the ACSL specification
of accumulate is then as simple as shown in Listing 7.8.

/*@
requires valid: \valid_read(a + (0..n-1));
requires bounds: AccumulateBounds(a, n, init);

assigns \nothing;

ensures result: \result == Accumulate(a, n, init);

*/
value_type
accumulate(const value_type* a, size_type n, value_type init);

Listing 7.8: Formal specification of accumulate

7.2.4. Implementation of accumulate

Listing 7.9 shows an implementation of the accumulate function with corresponding loop annotations.

value_type
accumulate(const value_type* a, size_type n, value_type init)
{
/*@
loop invariant index: 0 <= i <= n;
loop invariant partial: init == Accumulate(a, i, \at(init,Pre));
loop assigns i, init;
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

init = init + a[i];
}

return init;
}

Listing 7.9: Implementation of accumulate

Note that loop invariant partial claims that in the i-th iteration step result equals the accumulated
value of Equation (7.3). This depends on the property bounds in Listing 7.8 which expresses that there is
no numeric overflow when updating the variable init.
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7.3. The inner_product algorithm

The inner_product algorithm in the C++ standard library computes the inner product53 of two ranges.
Our version of the original signature54 reads:

value_type
inner_product(const value_type* a, const value_type* b,

size_type n, value_type init);

The result of inner_product equals the value

init +

n−1∑
i=0

a[i] · b[i]

thus, inner_product will return init for empty ranges.

7.3.1. The logic function InnerProduct

As in the case of accumulate (see Section 7.2) we specify inner_product by first defining a logic
function InnerProduct that formally defines the summation of the element-wise product of two arrays.

/*@
axiomatic InnerProductAxiomatic
{
logic integer

InnerProduct{L}(value_type* a, value_type* b, integer n,
value_type init) reads a[0..n-1], b[0..n-1];

axiom InnerProductEmpty:
\forall value_type *a, *b, init, integer n;

n <= 0 ==> InnerProduct(a, b, n, init) == init;

axiom InnerProductNext:
\forall value_type *a, *b, init, integer n;

n >= 0 ==> InnerProduct(a, b, n + 1, init) ==
InnerProduct(a, b, n, init) + (a[n] * b[n]);

axiom InnerProductRead{L1,L2}:
\forall value_type *a, *b, init, integer n;

Unchanged{L1,L2}(a, n) && Unchanged{L1,L2}(b, n) ==>
InnerProduct{L1}(a, b, n, init) ==
InnerProduct{L2}(a, b, n, init);

}

*/

Listing 7.10: The logic function InnerProduct

Both Axiom InnerProductRead and the reads clause serve the same purpose in that they express
that the result of the InnerProduct only depends on the values of a[0..n-1] and b[0..n-1].

53 Also referred to as dot product, see http://en.wikipedia.org/wiki/Dot_product
54 See http://www.sgi.com/tech/stl/inner_product.html
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7.3.2. Preventing numeric overflows for inner_product

Before we present our formal specification of inner_product we introduce in Listing 7.11 two predi-
cates that we will use subsequently in order to compactly express requirements that exclude numeric over-
flows while computing the inner product.

/*@
predicate
ProductBounds(value_type* a, value_type* b, integer n) =

\forall integer i; 0 <= i < n ==>
VALUE_TYPE_MIN <= a[i] * b[i] <= VALUE_TYPE_MAX;

predicate
InnerProductBounds(value_type* a, value_type* b, integer n,

value_type init) =
\forall integer i; 0 <= i <= n ==>

VALUE_TYPE_MIN <= InnerProduct(a, b, i, init) <= VALUE_TYPE_MAX;

*/

Listing 7.11: The predicates ProductBounds and InnerProductBounds

Predicate ProductBounds expresses that for 0 ≤ i < n the products

a[i] · b[i] (7.4)

do not overflow. Predicate InnerProductBounds, on the other hand, states that for 0 ≤ i < n the
partial sums

init +

i∑
k=0

a[k] · b[k] (7.5)

do not overflow.

Otherwise, one cannot guarantee that the result of inner_product equals the mathematical description
of InnerProduct.
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7.3.3. Formal specification of inner_product

Using the logic function InnerProduct, we specify inner_product as shown in Listing 7.12. Note
that we needn’t require that a and b are separated.

/*@
requires valid_a: \valid_read(a + (0..n-1));
requires valid_b: \valid_read(b + (0..n-1));
requires bounds: ProductBounds(a, b, n);
requires bounds: InnerProductBounds(a, b, n, init);

assigns \nothing;

ensures result: \result == InnerProduct(a, b, n, init);
ensures unchanged: Unchanged{Here,Pre}(a, n);
ensures unchanged: Unchanged{Here,Pre}(b, n);

*/
value_type
inner_product(const value_type* a, const value_type* b, size_type n,

value_type init);

Listing 7.12: Formal specification of inner_product

7.3.4. Implementation of inner_product

Listing 7.13 shows an implementation of inner_product with corresponding loop annotations.

value_type
inner_product(const value_type* a, const value_type* b, size_type n,

value_type init)
{
/*@

loop invariant index: 0 <= i <= n;
loop invariant inner: init == InnerProduct(a, b, i, \at(init,Pre));
loop assigns i, init;
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i) {

init = init + a[i] * b[i];
}

return init;
}

Listing 7.13: Implementation of inner_product

Note that the loop invariant inner claims that in the i-th iteration step the current value of init equals
the accumulated value of Equation (7.5). This depends of course on the properties bounds in Listing 7.12,
which express that there is no arithmetic overflow when computing the updates of the variable init.
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7.4. The partial_sum algorithm

The partial_sum algorithm in the C++ standard library computes the sum of a given initial value and
the elements in a range. Our version of the original signature55 reads:

size_type
partial_sum(const value_type* a, size_type n, value_type* b);

After executing the function partial_sum the array b[0..n-1] holds the following values

b[0] = a[0]

b[1] = a[0] + a[1]
...

b[n − 1] = a[0] + a[1] + . . . + a[n − 1]

More concisely, for 0 ≤ i < n holds

b[i] =

i∑
k=0

a[k] (7.6)

7.4.1. The predicate PartialSum

Equations (7.6) and (7.2) suggest that we define the ACSL predicate PartialSum in Listing 7.14 by using
the logic function Accumulate from Listing 7.6. Listing 7.14.

/*@
predicate
PartialSum{L}(value_type* a, integer n, value_type* b) =

\forall integer i; 0 <= i < n ==> Accumulate(a, i+1) == b[i];

*/

Listing 7.14: The predicate PartialSum

55 See http://www.sgi.com/tech/stl/partial_sum.html

109

http://www.sgi.com/tech/stl/partial_sum.html


7.4.2. Formal specification of partial_sum

Using the predicates PartialSum and AccumulateBounds, we specify partial_sum as shown in
Listing 7.15.

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires separated: \separated(a + (0..n-1), b + (0..n-1));
requires bounds: AccumulateBounds(a, n+1);

assigns b[0..n-1];

ensures result: \result == n;
ensures partialsum: PartialSum(a, n, b);
ensures unchanged: Unchanged{Here,Pre}(a, n);

*/
size_type
partial_sum(const value_type* a, size_type n, value_type* b);

Listing 7.15: Formal specification of partial_sum

Our specification requires that the arrays a[0..n-1] and b[0..n-1] are separated, that is, they do not
overlap. Note that is a stricter requirement than in the case of the original C++ version of partial_sum,
which allows that a equals b, thus allowing the computation of partial sums in place.56

56 See Note [1] at http://www.sgi.com/tech/stl/partial_sum.html
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7.4.3. Implementation of partial_sum

Listing 7.16 shows an implementation of partial_sum with corresponding loop annotations.

size_type
partial_sum(const value_type* a, size_type n, value_type* b)
{
if (n > 0) {

b[0] = a[0];

/*@
loop invariant bound: 1 <= i <= n;
loop invariant unchanged: Unchanged{Here,Pre}(a, n);
loop invariant accumulate: b[i-1] == Accumulate(a, i);
loop invariant partialsum: PartialSum(a, i, b);
loop assigns i, b[1..n-1];
loop variant n - i;

*/
for (size_type i = 1u; i < n; ++i) {

//@ ghost Enter:
b[i] = b[i - 1u] + a[i];
//@ assert unchanged: a[i] == \at(a[i],Enter);
//@ assert unchanged: Unchanged{Enter,Here}(a, i);
//@ assert unchanged: Unchanged{Enter,Here}(b, i);

}
}

return n;
}

Listing 7.16: Implementation of partial_sum

In order to facilitate the automatic verification of partial_sum, we had to add the assertions unchanged
and provide the lemmas of Listing 7.17.
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7.4.4. Additional lemmas

The lemmas shown in Listing 7.17 are needed for the verification of partial_sum and the algorithms in
Sections 7.6 and 7.7.

/*@
lemma PartialSumSection{K}:

\forall value_type *a, *b, integer m, n;
0 <= m <= n ==>
PartialSum{K}(a, n, b) ==>
PartialSum{K}(a, m, b);

lemma PartialSumUnchanged{K,L}:
\forall value_type *a, *b, integer n;
0 <= n ==>
PartialSum{K}(a, n, b) ==>
Unchanged{K, L}(a, n) ==>
Unchanged{K, L}(b, n) ==>
PartialSum{L}(a, n, b);

lemma PartialSumStep{L}:
\forall value_type *a, *b, integer n;
1 <= n ==>
PartialSum(a, n, b) ==>
b[n] == Accumulate(a, n+1) ==>
PartialSum(a, n+1, b);

lemma PartialSumStep2{K,L}:
\forall value_type *a, *b, integer n;
1 <= n ==>
PartialSum{K}(a, n, b) ==>
Unchanged{K,L}(a, n+1) ==>
Unchanged{K,L}(b, n) ==>
\at(b[n] == Accumulate(a, n+1),L) ==>
PartialSum{L}(a, n+1, b);

*/

Listing 7.17: The lemma PartialSumStep
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7.5. The adjacent_difference algorithm

The adjacent_difference algorithm in the C++ standard library computes the differences of adjacent
elements in a range. Our version of the original signature57 reads:

size_type
adjacent_difference(const value_type* a, size_type n, value_type* b);

After executing the function adjacent_difference the array b[0..n-1] holds the following values

b[0] = a[0]

b[1] = a[1] − a[0]
...

b[n − 1] = a[n − 1] − a[n − 2]

If we form the partial sums of the sequence b we find that

a[0] = b[0]

a[1] = b[0] + b[1]
...

a[n − 1] = b[0] + b[1] + . . . + b[n − 1]

Thus, we have for 0 ≤ i < n

a[i] =

i∑
k=0

b[k] (7.7)

which means that applying partial_sum on the output of adjacent_difference produces the
original input of adjacent_difference.

Conversely, if a[0..n-1] and b[0..n-1] are the input and output of partial_sum, then we have

b[0] = a[0]

b[1] = a[0] + a[1]
...

b[n − 1] = a[0] + b[1] + . . . + b[n − 1]

from which we can conclude

a[0] = b[0]

a[1] = b[1] − b[0]
... (7.8)

a[n − 1] = b[n − 1] − b[n − 2]

We will verify these claims in Sections 7.6 and 7.7.

57 See http://www.sgi.com/tech/stl/adjacent_difference.html
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7.5.1. The predicate AdjacentDifference

We define the predicate AdjacentDifference in Listing 7.19 by first introducing the logic function
Difference (Listing 7.18).

/*@
axiomatic DifferenceAxiomatic
{

logic value_type
Difference{L}(value_type* a, integer n) reads a[0..n];

axiom DifferenceEmptyOrSingle:
\forall value_type *a, integer n;

n <= 0 ==> Difference(a, n) == a[0];

axiom DifferenceNext:
\forall value_type *a, integer n;

n >= 1 ==> Difference(a, n) == a[n] - a[n-1];

axiom DifferenceRead{K,L}:
\forall value_type *a, integer n;

Unchanged{K,L}(a, 1+n) ==>
Difference{K}(a, n) == Difference{L}(a, n);

}

*/

Listing 7.18: The logic function Difference

/*@
predicate

AdjacentDifference{L}(value_type* a, integer n, value_type* b) =
\forall integer i; 0 <= i < n ==> b[i] == Difference(a, i);

*/

Listing 7.19: The predicate AdjacentDifference

7.5.2. Formal specification of adjacent_difference

We introduce here the predicate AdjacentDifferenceBounds (Listing 7.20) that captures conditions
that prevent numeric overflows while computing difference of the form a[i] - a[i-1].

/*@
predicate

AdjacentDifferenceBounds(value_type* a, integer n) =
\forall integer i; 1 <= i < n ==>
VALUE_TYPE_MIN <= Difference(a, i) <= VALUE_TYPE_MAX;

*/

Listing 7.20: The predicate AdjacentDifferenceBounds

Using the predicates AdjacentDifference and AdjacentDifferenceBounds we can provide a
concise formal specification of adjacent_difference (Listing 7.21). As in the case of the specifica-
tion of partial_sum we require that the arrays a[0..n-1] and b[0..n-1] are separated.
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/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires separated: \separated(a + (0..n-1), b + (0..n-1));
requires bounds: AdjacentDifferenceBounds(a, n);

assigns b[0..n-1];

ensures result: \result == n;
ensures difference: AdjacentDifference(a, n, b);
ensures unchanged: Unchanged{Here,Pre}(a, n);

*/
size_type
adjacent_difference(const value_type* a, size_type n, value_type* b);

Listing 7.21: Formal specification of adjacent_difference

7.5.3. Implementation of adjacent_difference

Listing 7.22 shows an implementation of adjacent_differencewith corresponding loop annotations.

In order to achieve the verification of the loop invariant difference we added

• the assertions bound and difference

• the lemmas AdjacentDifferenceStep and AdjacentDifferenceSection from List-
ing 7.23

• a statement contract with the two postconditions labeled as step

size_type
adjacent_difference(const value_type* a, size_type n, value_type* b)
{
if (n > 0) {

b[0] = a[0];

/*@
loop invariant index: 1 <= i <= n;
loop invariant unchanged: Unchanged{Here,Pre}(a, n);
loop invariant difference: AdjacentDifference(a, i, b);
loop assigns i, b[1..n-1];
loop variant n - i;

*/
for (size_type i = 1u; i < n; ++i) {

//@ assert bound: VALUE_TYPE_MIN <= Difference(a, i) <= VALUE_TYPE_MAX;
/*@
assigns b[i];
ensures step: Unchanged{Old,Here}(b, i);
ensures step: b[i] == Difference(a, i);

*/
b[i] = a[i] - a[i - 1u];
//@ assert difference: AdjacentDifference{Here}(a, i+1, b);

}
}

return n;
}

Listing 7.22: Implementation of adjacent_difference
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7.5.4. Additional Lemmas

The lemmas shown in Listing 7.23 are also needed for the verification of the algorithm in Section 7.7.

/*@
lemma AdjacentDifferenceStep{K,L}:

\forall value_type *a, *b, integer n;
AdjacentDifference{K}(a, n, b) ==>
Unchanged{K,L}(b, n) ==>
Unchanged{K,L}(a, n+1) ==>
\at(b[n],L) == Difference{L}(a, n) ==>
AdjacentDifference{L}(a, 1+n, b);

lemma AdjacentDifferenceSection{K}:
\forall value_type *a, *b, integer m, n;
0 <= m <= n ==>
AdjacentDifference{K}(a, n, b) ==>
AdjacentDifference{K}(a, m, b);

*/

Listing 7.23: The lemma AdjacentDifferenceStep
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7.6. Inverting partial_sum with adjacent_difference

In Section 7.5 we had informally argued that partial_sum and adjacent_difference are inverse
to each other (see Equations (7.7) and (7.8)). In the current section, we are going to verify the second
of these claims with the help of Frama-C, viz. that applying adjacent_difference to the output of
partial_sum produces the original array. In Section 7.7, we will verify the converse first claim.

Listing 7.24 expresses the property from Equation (7.8) as lemma, on the ACSL logical level. This lemma
is verified by Frama-C with the help of automatic theorem provers.

/*@
lemma PartialSumInverse{K,L}:
\forall value_type *a, *b, integer n;

0 <= n ==>
PartialSum{K}(a, n, b) ==>
Unchanged{K,L}(b, n) ==>
AdjacentDifference{L}(b, n, a) ==>
Unchanged{K,L}(a, n);

*/

Listing 7.24: The lemma PartialSumInverse

Since the lemma does not deal with arithmetic overflows or potential aliasing of data, we give a correspond-
ing auxiliary C function which takes these issues into account.

Function partial_sum_inverse, shown in Listing 7.25, calls first partial_sum and then
adjacent_difference. The contract of this function formulates preconditions that shall guarantee
that during the computation neither arithmetic overflows (property bound) nor unintended aliasing of ar-
rays (property separated) occur. Under these precondition, Frama-C automatically verifies that the final
adjacent_difference call just restores the original contents of a used for the initial partial_sum
call.

/*@
requires valid: \valid(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires separated: \separated(a + (0..n-1), b + (0..n-1));
requires bounds: AccumulateBounds(a, n+1);

assigns a[0..n-1], b[0..n-1];

ensures unchanged: Unchanged{Here,Pre}(a, n);

*/
void partial_sum_inverse(value_type* a, size_type n, value_type* b)
{
partial_sum(a, n, b);
adjacent_difference(b, n, a);

}

Listing 7.25: partial_sum and then adjacent_difference
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7.7. Inverting adjacent_difference with partial_sum

In this section, we prove the converse property, viz. that applying adjacent_difference, and there-
after partial_sum, restores the original data array. Listing 7.26 expresses this property as a lemma on
the level of ACSL predicates. It had to be proven interactively with Coq, by induction on n.

/*@
lemma AdjacentDifferenceInverse{K,L}:

\forall value_type *a, *b, integer n;
0 <= n ==>
AdjacentDifference{K}(a, n, b) ==>
Unchanged{K,L}(b, n) ==>
PartialSum{L}(b, n, a) ==>
Unchanged{K,L}(a, n);

*/

Listing 7.26: The lemma AdjacentDifferenceInverse

As in the case discussed in Section 7.6, we give a corresponding C function in order to account for possi-
ble arithmetic overflows and potential aliasing of data. Function adjacent_difference_inverse,
shown in Listing 7.27, calls first adjacent_difference and then partial_sum. The contract of
this function formulates preconditions that shall guarantee that during the computation neither arithmetic
overflows (property bound) nor unintended aliasing of arrays (property separated) occur.

/*@
requires valid: \valid(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires separated: \separated(a + (0..n-1), b + (0..n-1));
requires bounds: AdjacentDifferenceBounds(a, n+1);

assigns a[0..n-1], b[0..n-1];

ensures unchanged: Unchanged{Here,Pre}(a, n);

*/
void adjacent_difference_inverse(value_type* a, size_type n, value_type* b)
{
adjacent_difference(a, n, b);
partial_sum(b, n, a);

}

Listing 7.27: adjacent_difference and then partial_sum
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In order to improve the automatic verification rate of the function adjacent_difference_inverse
we also supplied the following lemma (Listing 7.28) which captures the transitivity of the predicate Unchanged.
Both the lemma itself and (with its additional help) the contract of adjacent_difference_inverse
are proven by Frama-C without further manual intervention. This finishes the formal proof of our inversity
claims from Section 7.5.

/*@
lemma UnchangedTransitive{K,L,M}:
\forall value_type *a, integer n;

0 <= n ==>
Unchanged{K,L}(a, n) ==>
Unchanged{L,M}(a, n) ==>
Unchanged{K,M}(a, n);

*/

Listing 7.28: The lemma UnchangedTransitive
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8. The Stack data type

Originally, ACSL is tailored to the task of specifying and verifying one single C function at a time. How-
ever, in practice we are also faced with the task to implement a family of functions, usually around some
sophisticated data structure, which have to obey certain rules of interdependence. In this kind of task, we
are not interested in the properties of a single function (usually called “implementation details”), but in
properties describing how several function play together (usually called “abstract interface description”, or
“abstract data type properties”).

This chapter introduces a methodology to formally denote and verify the latter property sets using ACSL.
For a more detailed discussion of our approach to the formal verification of Stack we refer to this the-
sis [14].

A stack is a data type that can hold objects and has the property that, if an object a is pushed on a stack
before object b, then a can only be removed (popped) after b. A stack is, in other words, a first-in, last-out
data type (see Figure 8.1). The top function of a stack returns the last element that has been pushed on a
stack.

push pop

top

Figure 8.1.: Push and pop on a stack

We consider only stacks that have a finite capacity, that is, that can only hold a maximum number c of
elements that is constant throughout their lifetime. This restriction allows us to define a stack without
relying on dynamic memory allocation. When a stack is created or initialized, it contains no elements,
i.e., its size is 0. The function push and pop increases and decreases the size of a stack by at most one,
respectively.
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8.1. Methodology overview

Figure 8.2 gives an overview of our methodology to specify and verify abstract data types (verification of
one axiom shown only).

Implementation
of pop

Specification
of pop

/*@
    requires s ≈ t;
    requires !Full(s);
    ...
    ensures  s ≈ t;
*/
void 
axiom_pop_of_push(Stack* s, Stack* t, value_type v) 
{
       stack_push(s, v);
       stack_pop(s);
}    

�full(s) ➞ pop(push(s, v)) = s

Specification
of push

Implementation
of push

Figure 8.2.: Methodology Overview

What we will basically do is:

1. specify axioms about how the stack functions should interact with each other (Section 8.2),

2. define a basic implementation of C data structures (only one in our example, viz.
struct Stack; see Section 8.3) and some invariants the instances of them have to obey (Sec-
tion 8.4),

3. provide for each stack function an ACSL contract and a C implementation (Section 8.7),

4. verify each function against its contract (Section 8.7),

5. transform the axioms into ACSL-annotated C code (Section 8.8), and

6. verify that code, using access function contracts and data-type invariants as necessary (Section 8.8).

Section 8.5 provides an ACSL-predicate deciding whether two instances of a struct Stack are consid-
ered to be equal (indication by “≈” in Figure 8.2), while Section 8.6 gives a corresponding C implementa-
tion. The issue of an appropriate definition of equality of data instances is familiar to any C programmer
who had to replace a faulty comparison if(s1 == s2) by the correct if(strcmp(s1,s2)== 0) to
compare two strings char *s1,*s2 for equality.
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8.2. Stack axioms

To specify the interplay of the stack access functions, we use a set of axioms58, all but one of them having
the form of a conditional equation.

Let V denote an arbitrary type. We denote by S c the type of stacks with capacity c > 0 of elements of type
V . The aforementioned functions then have the following signatures.

init : S c → S c,

push : S c × V → S c,

pop : S c → S c,

top : S c → V,

size : S c → N.

With B denoting the boolean type we will also define two auxiliary functions

empty : S c → B,

full : S c → B.

To qualify as a stack these functions must satisfy the following rules which are also referred to as stack
axioms.

8.2.1. Stack initialization

After a stack has been initialized its size is 0.

size(init(s)) = 0. (8.1)

The auxiliary functions empty and full are defined as follows

empty(s), iff size(s) = 0, (8.2)

full(s), iff size(s) = c. (8.3)

We expect that for every stack s the following condition holds

0 ≤ size(s) ≤ c. (8.4)

8.2.2. Adding an element to a stack

To push an element v on a stack the stack must not be full. If an element has been pushed on an eligible
stack, its size increases by 1

size(push(s, v)) = size(s) + 1, if ¬full(s). (8.5)

Moreover, the element pushed on a stack is the top element of the resulting stack

top(push(s, v)) = v, if ¬full(s). (8.6)
58 There is an analogy in geometry: Euclid (e.g. [15]) invented the use of axioms there, but still kept definitions of point, line,

plane, etc. Hilbert [16] recognized that the latter are not only unformalizable, but also unnecessary, and dropped them, keeping
only the formal descriptions of relations between them.
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8.2.3. Removing an element from a stack

An element can only be removed from a non-empty stack. If an element has been removed from an eligible
stack the stack size decreases by 1

size(pop(s)) = size(s) − 1, if ¬empty(s). (8.7)

If an element is pushed on a stack and immediately afterwards an element is removed from the resulting
stack then the final stack is equal to the original stack

pop(push(s, v)) = s, if ¬full(s). (8.8)

Conversely, if an element is removed from a non-empty stack and if afterwards the top element of the
original stack is pushed on the new stack then the resulting stack is equal to the original stack.

push(pop(s), top(s)) = s, if ¬empty(s). (8.9)

8.2.4. A note on exception handling

We don’t impose a requirement on push(s, v) if s is a full stack, nor on pop(s) or top(s) if s is
an empty stack. Specifying the behavior in such exceptional situations is a problem by its own; a variety of
approaches is discussed in the literature. We won’t elaborate further on this issue, but only give an example
to warn about “innocent-looking” exception specifications that may lead to undesired results.

If we’d introduce an additional error value err in the element type V and require top(s)= err if s is
empty, we’d be faced with the problem of specifying the behavior of push(s, err). At first glance, it
would seem a good idea to have err just been ignored by push, i.e. to require

push(s, err) = s. (8.10)

However, we then could derive for any non-full and non-empty stack s, that

size(s) = size(pop(push(s, err))) by 8.8

= size(pop(s)) as assumed in 8.10

= size(s) − 1 by 8.7

i.e. no such stacks could exist, or all int values would be equal.
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8.3. The structure Stack and its associated functions

We now introduce one possible C implementation of the above axioms. It is centred around the C structure
Stack shown in Listing 8.3.

struct Stack
{

value_type* obj;

size_type capacity;

size_type size;
};

typedef struct Stack Stack;

Listing 8.3: Definition of type Stack

This struct holds an array obj of positive length called capacity. The capacity of a stack is the maximum
number of elements this stack can hold. The field size indicates the number elements that are currently in
the stack. See also Figure 8.4 which attempts to interpret this definition according to Figure 8.1.

obj[1]

...

obj[0]

obj[size-1]

size

capacity
top

Figure 8.4.: Interpreting the data structure Stack
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Based on the stack functions from Section 8.2, we declare in Listing 8.5 the following functions as part of
our Stack data type.

void stack_init(Stack* s, value_type* a, size_type n);

bool stack_equal(const Stack* s, const Stack* t);

size_type stack_size(const Stack* s);

bool stack_empty(const Stack* s);

bool stack_full(const Stack* s);

value_type stack_top(const Stack* s);

void stack_push(Stack* s, value_type v);

void stack_pop(Stack* s);

Listing 8.5: Declaration of functions of type Stack

Most of these functions directly correspond to methods of the C++ std::stack template class.59 The
function stack_equal corresponds to the comparison operator ==, whereas one use of stack_init
is to bring a stack into a well-defined initial state. The function stack_full has no counterpart in std
::stack. This reflects the fact that we avoid dynamic memory allocation, while std::stack does
not.

8.4. Stack invariants

Not every possible instance of type Stack is considered a valid one, e.g., with our definition of Stack in
Listing 8.3, Stack s = {{0,0,0,0},4,5} is not. Below, we will define an ACSL-predicate Valid
that discriminates valid and invalid instances.

Before, we introduce in Listing 8.6 the auxiliary logical function Capacity and Size which we can
use in specifications to refer to the fields capacity and size of Stack, respectively. This listing also
contains the logical function Top which defines the array element with index size-1 as the top place of
a stack. The reader can consider this as an attempt to hide implementation details from the specification.

//@ logic size_type Capacity{L}(Stack* s) = s->capacity;

//@ logic size_type Size{L}(Stack* s) = s->size;

//@ logic value_type* Storage{L}(Stack* s) = s->obj;

//@ logic value_type Top{L}(Stack* s) = s->obj[s->size-1];

Listing 8.6: The logical functions Capacity, Size and Top

We also introduce in Listing 8.7 two predicates that express the concepts of empty and full stacks by
referring to a stack’s size and capacity (see Equations (8.2) and (8.3)).

59 See http://www.sgi.com/tech/stl/stack.html
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//@ predicate Empty{L}(Stack* s) = Size(s) == 0;

//@ predicate Full{L}(Stack* s) = Size(s) == Capacity(s);

Listing 8.7: Predicates for empty an full stacks

There are some obvious invariants that must be fulfilled by every valid object of type Stack:

• The stack capacity shall be strictly greater than zero (an empty stack is ok but a stack that cannot hold
anything is not useful).

• The pointer obj shall refer to an array of length capacity.

• The number of elements size of a stack the must be non-negative and not greater than its capacity.

These invariants are formalized in the predicate Valid of Listing 8.8.

/*@
predicate Valid{L}(Stack* s) =
\valid(s) &&
0 < Capacity(s) &&
0 <= Size(s) <= Capacity(s) &&
\valid(Storage(s) + (0..Capacity(s)-1)) &&
\separated(s, Storage(s) + (0..Capacity(s)-1));

*/

Listing 8.8: The predicate Valid

Note how the use of the previously defined logical functions and predicates allows us to define the stack
invariant without directly referring to the fields of Stack. As we usually have to deal with a pointer s of
type Stack we add the necessary \valid(s) to the predicate Valid.
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8.5. Equality of stacks

Defining equality of instances of non-trivial data types, in particular in object-oriented languages, is not an
easy task. The book Programming in Scala[17, Chapter 28] devotes to this topic a whole chapter of more
than twenty pages. In the following two sections we give a few hints how ACSL and Frama-C can help to
correctly define equality for a simple data type.

We consider two stacks as equal if they have the same size and if they contain the same objects. To be more
precise, let s and t two pointers of type Stack, then we define the predicate Equal as in Listing 8.9.

/*@
predicate Equal{S,T}(Stack* s, Stack* t) =

Size{S}(s) == Size{T}(t) &&
EqualRanges{S,T}(Storage{S}(s), Size{S}(s), Storage{T}(t));

*/

Listing 8.9: Equality of stacks

Our use of labels in Listing 8.9 makes the specification somewhat hard to read (in particular in the last
line where we reuse the predicate EqualRanges from Page 29). However, this definition of Equal will
allow us later to compare the same stack object at different points of a program. The logical expression
Equal{A,B}(s,t) reads informally as: The stack object *s at program point A equals the stack object
*t at program point B.

The reader might wonder why we exclude the capacity of a stack into the definition of stack equality. This
approach can be motivated with the behavior of the method capacity of the class std::vector<T>.
There, equal instances of type std::vector<T> may very well have different capacities.60

If equal stacks can have different capacities then, according to our definition of the predicate Full in
Listing 8.7, we can have to equal stacks where one is full and the other one is not.

A finer, but very important point in our specification of equality of stacks is that the elements of the arrays
s->obj and t->obj are compared only up to s->size and not up to s->capacity. Thus the two
stacks s and t in Figure 8.10 are considered equal although there is are obvious differences in their internal
arrays.

capacity = 6
size = 3

Stack s

4 2 1217 -3 4 4 2 817 4

capacity = 5
size = 3

Stack s

Figure 8.10.: Example of two equal stacks

60 See http://www.cplusplus.com/reference/vector/vector/capacity
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If we define an equality relation (=) of objects for a data type such as Stack, we have to make sure that
the following rules hold.

reflexivity ∀s ∈ S : s = s, (8.11a)

symmetry ∀s, t ∈ S : s = t =⇒ t = s, (8.11b)

transitivity ∀s, t, u ∈ S : s = t ∧ t = u =⇒ s = u. (8.11c)

Any relation that satisfies the conditions (8.11) is referred to as an equivalence relation. The mathematical
set of all instances that are considered equal to some given instance s is called the equivalence class of s
with respect to that relation.

Listing 8.11 shows a formalization of these three rules for the relation Equal; it can be automatically
verified that they are a consequence of the definition of Equal in Listing 8.9.

/*@
lemma StackEqualReflexive{S} :
\forall Stack* s; Equal{S,S}(s, s);

lemma StackEqualSymmetric{S,T} :
\forall Stack *s, *t;

Equal{S,T}(s, t) ==> Equal{T,S}(t, s);

lemma StackEqualTransitive{S,T,U}:
\forall Stack *s, *t, *u;

Equal{S,T}(s, t) && Equal{T,U}(t, u) ==> Equal{S,U}(s, u);

*/

Listing 8.11: Equality of stacks is an equivalence relation

The two stacks in Figure 8.10 show that an equivalence class of Equal can contain more than one ele-
ment.61 The stacks s and t in Figure 8.10 are also referred to as two representatives of the same equivalence
class. In such a situation, the question arises whether a function that is defined on a set with an equivalence
relation can be defined in such a way that its definition is independent of the chosen representatives.62 We
ask, in other words, whether the function is well-defined on the set of all equivalence classes of the relation
Equal.63 The question of well-definition will play an important role when verifying the functions of the
Stack (see Section 8.7).

61 This is a common situation in mathematics. For example, the equivalence class of the rational number 1
2 contains infinitely

many elements, viz. 1
2 ,

2
4 ,

7
14 , . . ..

62 This is why mathematicians have to prove that 1
2 + 3

5 equals 7
14 + 3

5 .
63 See http://en.wikipedia.org/wiki/Well-definition.
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8.6. Runtime equality of stacks

The function stack_equal is the C equivalent for the Equal predicate. The specification of stack_equal
is shown in Listing 8.12. Note that this specifications explicitly refers to valid stacks.

/*@
requires Valid(s);
requires Valid(t);

assigns \nothing;

ensures \result == 1 <==> Equal{Here,Here}(s, t);
ensures \result == 0 <==> !Equal{Here,Here}(s, t);

*/
bool stack_equal(const Stack* s, const Stack* t);

Listing 8.12: Specification of stack_equal

The implementation of stack_equal in Listing 8.13 compares two stacks according to the same rules of
predicate Equal.

bool stack_equal(const Stack* s, const Stack* t)
{
return (s->size == t->size) && equal(s->obj, s->size, t->obj);

}

Listing 8.13: Implementation of stack_equal
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8.7. Verification of stack functions

In this section we verify the functions stack_init (Section 8.7.1), stack_size (Section 8.7.2),
stack_empty (Section 8.7.3), stack_full (Section 8.7.4), stack_top (Section 8.7.5), and stack_push
(Section 8.7.6) stack_pop (Section 8.7.7), of the data type Stack. To be more precise, we provide for
each of function stack_foo:

• an ACSL specification of stack_foo

• a C implementation of stack_foo

• a C function stack_foo_wd64 accompanied by a an ACSL contract that expresses that the imple-
mentation of stack_foo is well-defined. Figure 8.14 shows our methodology for the verification
of well-definition in the pop example, (≈) again indicating the user-defined Stack equality.

Specification
of pop

/*@
  requires s ≈ t;
  requires !Empty(s);
    ...
  ensures  s ≈ t;
*/
void stack_pop_wd(Stack *s, Stack *t) 
{
  stack_pop(s);
  stack_pop(t);
} 

Figure 8.14.: Methodology for the verification of well-definition

Note that the specifications of the various functions will explicitly refer to the internal state of Stack. In
Section 8.8 we will show that the interplay of these functions satisfy the stack axioms from Section 8.2.

64 The suffix _wd stands for well definition
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8.7.1. The function stack_init

Listing 8.15 shows the ACSL specification of stack_init. Note that our specification of the post-
conditions contains a redundancy because a stack is empty if and only if its size is zero.

/*@
requires \valid(s);
requires 0 < capacity;
requires \valid(storage + (0..capacity-1));
requires \separated(s, storage + (0..capacity-1));

assigns s->obj;
assigns s->capacity;
assigns s->size;

ensures Valid(s);
ensures Capacity(s) == capacity;
ensures Size(s) == 0;
ensures Empty(s);
ensures Storage(s) == storage;

*/
void stack_init(Stack* s, value_type* storage, size_type capacity);

Listing 8.15: Specification of stack_init

Listing 8.15 shows the implementation of stack_init. It simply initializes obj and capacity with
the respective value of the array and sets the field size to zero.

void stack_init(Stack* s, value_type* storage, size_type capacity)
{
s->obj = storage;
s->capacity = capacity;
s->size = 0;

}

Listing 8.16: Implementation of stack_init
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8.7.2. The function stack_size

The function stack_size is the runtime version of the logical function Size from Listing 8.6 on
Page 126. The specification of stack_size in Listing 8.17 simply states that stack_size produces
the same result as Size.

/*@
requires Valid(s);

assigns \nothing;

ensures \result == Size(s);

*/
size_type stack_size(const Stack* s);

Listing 8.17: Specification of stack_size

As in the definition of the logical function Size the implementation of stack_size in Figure 8.18
simply returns the field size.

size_type stack_size(const Stack* s)
{
return s->size;

}

Listing 8.18: Implementation of stack_size

Listing 8.19 shows our check whether stack_size is well-defined. Since stack_size neither modi-
fies the state of its Stack argument nor that of any global variable we only check whether it produces the
same result for equal stacks. Note that we simply may use operator == to compare integers since we didn’t
introduce a nontrivial equivalence relation on that data type.

/*@
requires Valid(s) && Valid(t);
requires Equal{Here,Here}(s, t);

assigns \nothing;

ensures \result;

*/
bool stack_size_wd(const Stack* s, const Stack* t)
{
return stack_size(s) == stack_size(t);

}

Listing 8.19: Well-definition of stack_size
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8.7.3. The function stack_empty

The function stack_empty is the runtime version of the predicate Empty from Listing 8.7 on Page 127.

/*@
requires Valid(s);

assigns \nothing;

ensures \result == 1 <==> Empty(s);
ensures \result == 0 <==> !Empty(s);

*/
bool stack_empty(const Stack* s);

Listing 8.20: Specification of stack_empty

As in the definition of the predicate Empty the implementation of stack_empty in Figure 8.21 simply
checks whether the size of the stack is zero.

bool stack_empty(const Stack* s)
{
return stack_size(s) == 0;

}

Listing 8.21: Implementation of stack_empty

Listing 8.22 shows our check whether stack_empty is well-defined.

/*@
requires Valid(s);
requires Valid(t);
requires Equal{Here,Here}(s, t);

assigns \nothing;

ensures \result;

*/
bool stack_empty_wd(const Stack* s, const Stack* t)
{
return stack_empty(s) == stack_empty(t);

}

Listing 8.22: Well-definition of stack_empty
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8.7.4. The function stack_full

The function stack_full is the runtime version of the predicate Full from Listing 8.7 on Page 127.

/*@
requires Valid(s);

assigns \nothing;

ensures \result == 1 <==> Full(s);
ensures \result == 0 <==> !Full(s);

*/
bool stack_full(const Stack* s);

Listing 8.23: Specification of stack_full

As in the definition of the predicate Full the implementation of stack_full in Figure 8.24 simply
checks whether the size of the stack equals its capacity.

bool stack_full(const Stack* s)
{
return stack_size(s) == s->capacity;

}

Listing 8.24: Implementation of stack_full

Note that with our definition of stack equality (Section 8.5) there can be equal stack with different capacities.
Accordingly, there can exist equal stacks where one is full while the other is not.
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8.7.5. The function stack_top

The function stack_top is the runtime version of the logical function Top from Listing 8.6 on Page 126.
The specification of stack_top in Listing 8.25 simply states that for non-empty stacks stack_top
produces the same result as Top which in turn just returns the element obj[size-1] of Stack.

/*@
requires Valid(s);

assigns \nothing;

ensures !Empty(s) ==> \result == Top(s);

*/
value_type stack_top(const Stack* s);

Listing 8.25: Specification of stack_top

For a non-empty stack the implementation of stack_top in Figure 8.26 simply returns the element obj
[size-1]. Note that our implementation of stack_top does not crash when it is applied to an empty
stack. In this case we return the first element of the internal, non-empty array obj. This is consistent with
our specification of stack_top which only refers to non-empty stacks.

value_type stack_top(const Stack* s)
{
if (!stack_empty(s)) {
return s->obj[s->size - 1];

} else {
return s->obj[0];

}
}

Listing 8.26: Implementation of stack_top

Listing 8.27 shows our check whether stack_top well-defined for non-empty stacks.

/*@
requires Valid(s) && !Empty(s);
requires Valid(t) && !Empty(t);
requires Equal{Here,Here}(s, t);

assigns \nothing;

ensures \result;

*/
bool stack_top_wd(const Stack* s, const Stack* t)
{
return stack_top(s) == stack_top(t);

}

Listing 8.27: Well-definition of stack_top

Since our axioms in Section 8.2 did not impose any behavior on the behavior of stack_top for empty
stacks, we prove the well-definition of stack_top only for nonempty stacks.
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8.7.6. The function stack_push

Listing 8.28 shows the ACSL specification of the function stack_push. In accordance with Axiom (8.5),
stack_push is supposed to increase the number of elements of a non-full stack by one. The specification
also demands that the value that is pushed on a non-full stack becomes the top element of the resulting stack
(see Axiom (8.6)).

/*@
requires Valid(s);

assigns s->size;
assigns s->obj[s->size];

behavior not_full:
assumes !Full(s);

assigns s->size;
assigns s->obj[s->size];

ensures Valid(s);
ensures Size(s) == Size{Old}(s) + 1;
ensures Top(s) == v;
ensures !Empty(s);
ensures Unchanged{Pre,Here}(Storage(s), Size{Pre}(s));
ensures Storage(s) == Storage{Old}(s);
ensures Capacity(s) == Capacity{Old}(s);

behavior full:
assumes Full(s);

assigns \nothing;

ensures Valid(s);
ensures Full(s);
ensures Unchanged{Pre,Here}(Storage(s), Size(s));
ensures Size(s) == Size{Old}(s);
ensures Storage(s) == Storage{Old}(s);
ensures Capacity(s) == Capacity{Old}(s);

complete behaviors;
disjoint behaviors;

*/
void stack_push(Stack* s, value_type v);

Listing 8.28: Specification of stack_push

The implementation of stack_push is shown in Listing 8.29. It checks whether its argument is a non-full
stack in which case it increases the field size by one but only after it has assigned the function argument
to the element obj[size].

void stack_push(Stack* s, value_type v)
{
if (!stack_full(s)) {

s->obj[s->size++] = v;
}

}

Listing 8.29: Implementation of stack_push
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The function stack_push does not return a value but rather modifies its argument. For the well-definition
of stack_push we therefore check whether it turns equal stacks into equal stacks. However, equality of
the stack arguments is not sufficient for a proof that stack_push is well-defined. We must also ensure
that there is no aliasing between the two stacks. Otherwise modifying one stack could modify the other
stack in unexpected ways. In order to express that there is no aliasing between two stacks, we define in
Listing 8.30 the predicate Separated.

/*@
predicate Separated(Stack* s, Stack* t) =

\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));

*/

Listing 8.30: The predicate Separated

Listing 8.31 shows our formalization of the well-definition for stack_push.

/*@
requires valid: Valid(s) && Valid(t);
requires equal: Equal{Here,Here}(s, t);
requires not_full: !Full(s) && !Full(t);
requires separated: Separated(s, t);

assigns s->size, s->obj[s->size];
assigns t->size, t->obj[t->size];

ensures valid: Valid(s) && Valid(t);
ensures equal: Equal{Here,Here}(s, t);

*/
void stack_push_wd(Stack* s, Stack* t, value_type v)
{
stack_push(s, v);
stack_push(t, v);
//@ assert top: Top(s) == v;
//@ assert top: Top(t) == v;
//@ assert equal: EqualRanges{Here,Here}(Storage(s), Size{Pre}(s), Storage(t));

}

Listing 8.31: Well-definition of stack_push

In order to achieve an automatic verification of the well-definition of stack_push we added in List-
ing 8.31 the assertions top and equal and introduced the lemma StackPushEqual from Listing 8.32.

/*@
lemma StackPushEqual{K,L}:

\forall Stack *s, *t;
Equal{K,K}(s,t) ==>
Size{L}(s) == Size{K}(s) + 1 ==>
Size{L}(s) == Size{L}(t) ==>
Top{L}(s) == Top{L}(t) ==>
EqualRanges{L,L}(Storage{L}(s), Size{K}(s), Storage{L}(t)) ==>
Equal{L,L}(s,t);

*/

Listing 8.32: The lemma StackPushEqual
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8.7.7. The function stack_pop

Listing 8.33 shows the ACSL specification of the function stack_pop. In accordance with Axiom (8.7)
stack_pop is supposed to reduce the number of elements in a non-empty stack by one. In addition to
the requirements imposed by the axioms, our specification demands that stack_pop changes no memory
location if it is applied to an empty stack.

/*@
requires Valid(s);

assigns s->size;

ensures Valid(s);

behavior not_empty:
assumes !Empty(s);

assigns s->size;

ensures Size(s) == Size{Old}(s) - 1;
ensures !Full(s);
ensures Unchanged{Pre,Here}(Storage(s), Size(s));
ensures Storage(s) == Storage{Old}(s);
ensures Capacity(s) == Capacity{Old}(s);

behavior empty:
assumes Empty(s);

assigns \nothing;

ensures Empty(s);
ensures Unchanged{Pre,Here}(Storage(s), Size(s));
ensures Size(s) == Size{Old}(s);
ensures Storage(s) == Storage{Old}(s);
ensures Capacity(s) == Capacity{Old}(s);

complete behaviors;
disjoint behaviors;

*/
void stack_pop(Stack* s);

Listing 8.33: Specification of stack_pop

The implementation of stack_pop is shown in Listing 8.34. It checks whether its argument is a non-
empty stack in which case it decreases the field size by one.

void stack_pop(Stack* s)
{
if (!stack_empty(s)) {

--s->size;
}

}

Listing 8.34: Implementation of stack_pop
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Listing 8.35 shows our check whether stack_pop is well-defined. As in the case of stack_push we
use the predicate Separated (Listing 8.30) in order to express that there is no aliasing between the two
stack arguments.

/*@
requires Valid(s);
requires Valid(t);
requires Equal{Here,Here}(s, t);
requires Separated(s, t);

assigns s->size;
assigns t->size;

ensures Valid(s);
ensures Valid(t);
ensures Equal{Here,Here}(s, t);

*/
void stack_pop_wd(Stack* s, Stack* t)
{
stack_pop(s);
stack_pop(t);

}

Listing 8.35: Well-definition of stack_pop
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8.8. Verification of stack axioms

In this section we show that the stack functions defined in Section 8.7 satisfy the stack Axioms of Sec-
tion 8.2.

The annotated code has been obtained from the axioms in a fully systematical way. In order to transform a
condition equation p→ s = t:

• Generate a clause requires p.

• Generate a clause requires x1 == ... == xn for each variable x with n occurrences in s
and t.

• Change the i-th occurrence of x to xi in s and t.

• Translate both terms s and t to reversed polish notation.

• Generate a clause ensures y1 == y2, where y1 and y2 denote the value corresponding to the
translated s and t, respectively.

This makes it easy to implement a tool that does the translation automatically, but yields a slightly longer
contract in our example.

8.8.1. Resetting a stack

Our formulation in ACSL/C of the Axiom in Equation (8.1) on Page 123 is shown in Listing 8.36.

/*@
requires \valid(s);
requires 0 < n;
requires \valid(a + (0..n-1));
requires \separated(s, a + (0..n-1));

assigns s->obj, s->capacity, s->size;

ensures Valid(s);
ensures \result == 0;

*/
size_type axiom_size_of_init(Stack* s, value_type* a, size_type n)
{
stack_init(s, a, n);
return stack_size(s);

}

Listing 8.36: Specification of Axiom (8.1)
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8.8.2. Adding an element to a stack

Axioms (8.5) and (8.6) describe the behavior of a stack when an element is added.

/*@
requires Valid(s);
requires !Full(s);

assigns s->size;
assigns s->obj[s->size];

ensures Valid(s);
ensures \result == Size{Old}(s) + 1;

*/
size_type axiom_size_of_push(Stack* s, value_type v)
{
stack_push(s, v);
return stack_size(s);

}

Listing 8.37: Specification of Axiom (8.5)

Except for the assigns clauses, the ACSL-specification refers only to encapsulating logical functions and
predicates defined in Section 8.4. If ACSL would provide a means to define encapsulating logical functions
returning also sets of memory locations, the expressions in assigns clauses would not need to refer to
the details of our Stack implementation.65 As an alternative, assigns clauses could be omitted, as long
as the proofs are only used to convince a human reader.

/*@
requires Valid(s);
requires !Full(s);

assigns s->size;
assigns s->obj[s->size];

ensures \result == v;

*/
value_type axiom_top_of_push(Stack* s, value_type v)
{
stack_push(s, v);
return stack_top(s);

}

Listing 8.38: Specification of Axiom (8.6)

65 In [9, § 2.3.4], a powerful sublanguage to build memory location set expressions is defined. We will explore its capabilities in
a later version.
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8.8.3. Removing an element from a stack

This section shows the Listings for Axioms 8.7, 8.8 and 8.9 which describe the behavior of a stack when an
element is removed.

/*@
requires Valid(s) && !Empty(s);
assigns s->size;
ensures \result == Size{Old}(s) - 1;

*/
size_type axiom_size_of_pop(Stack* s)
{
stack_pop(s);
return stack_size(s);

}

Listing 8.39: Specification of Axiom (8.7)

/*@
requires Valid(s) && !Full(s);
assigns s->size, s->obj[s->size];
ensures Equal{Pre,Here}(s, s);

*/
void axiom_pop_of_push(Stack* s, value_type v)
{
stack_push(s, v);
stack_pop(s);

}

Listing 8.40: Specification of Axiom (8.8)

/*@
requires Valid(s) && !Empty(s);
assigns s->size, s->obj[s->size-1];
ensures Equal{Here,Old}(s, s);

*/
void axiom_push_of_pop_top(Stack* s)
{
const value_type val = stack_top(s);
stack_pop(s);
stack_push(s, val);

}

Listing 8.41: Specification of Axiom (8.9)
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9. Results of formal verification

In this chapter we introduce the formal verification tools used in this tutorial. We will afterwards present to
what extent the examples from Chapters 3–8 could be deductively verified.

Within Frama-C, the WP plug-in [2] enables deductive verification of C programs that have been annotated
with the ANSI/ISO-C Specification Language (ACSL)[1]. The WP plug-in uses weakest precondition com-
putations to generate proof obligations. To formally prove the ACSL properties, these proof obligations can
be submitted to external automatic theorem provers or interactive proof assistants. The precise settings for
WP and the associated provers that we used in this release we refer to Page 5.

For each algorithm we list in the following tables the number of generated verification conditions (VC),
as well as the percentage of proven verification conditions. The tables show that all verification condi-
tions could be verified. Please note that the number of proven verification conditions do not reflect on the
quality/strength of the individual provers. The reason for that is that we “pipe” each verification condition
sequentially through a list of provers. If one prover succeeds, then the remaining provers are not called.

The tables show that the majority of verification conditions could be verified by automatic provers. In
Table 9.1 we explicitly list the ACSL lemmas that required induction proofs performed with Coq.

ACSL Lemma Listing
CountBounds 3.25
CountMonotonic 3.25
CountUnion 3.25
RemoveCountMonotonic 6.31
AdjacentDifferenceInverse 7.26

Table 9.1.: ACSL lemmas that were proved with Coq
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Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Z3 Coq

equal 3.1 18 18 100 8 0 10 0 0
equal (IsEqual) 3.1 15 15 100 7 0 8 0 0
equal (mismatch) 3.2 9 9 100 6 0 3 0 0
mismatch 3.2 20 20 100 9 0 11 0 0
find 3.3 19 19 100 8 0 11 0 0
find (2) 3.4 19 19 100 9 0 10 0 0
find_first_of 3.5 28 28 100 16 0 12 0 0
adjacent_find 3.6 23 23 100 11 0 11 1 0
search 3.7 33 33 100 19 0 14 0 0
count 3.8 19 19 100 8 0 11 0 0

Table 9.2.: Results for non-mutating algorithms

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Z3 Coq

properties of operator < 4.1 6 6 100 4 0 2 0 0
max_element 4.2 25 25 100 13 0 12 0 0
max_element (2) 4.3 25 25 100 12 0 13 0 0
max_seq 4.4 8 8 100 5 0 3 0 0
min_element 4.5 25 25 100 12 0 13 0 0

Table 9.3.: Results for maximum and minimum algorithms

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Z3 Coq

lower_bound 5.1 22 22 100 10 0 12 0 0
upper_bound 5.2 22 22 100 8 0 14 0 0
equal_range 5.3 20 20 100 15 0 5 0 0
binary_search 5.4 10 10 100 8 0 2 0 0
binary_search (2) 5.4 11 11 100 8 0 3 0 0

Table 9.4.: Results for binary search algorithms

146



Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Z3 Coq

fill 6.3 14 14 100 4 0 10 0 0
swap 6.2 8 8 100 8 0 0 0 0
swap_ranges 6.4 27 27 100 5 0 22 0 0
copy 6.5 18 18 100 4 0 14 0 0
reverse_copy 6.6 21 21 100 4 0 17 0 0
reverse 6.7 29 29 100 7 0 22 0 0
rotate_copy 6.8 19 19 100 4 0 15 0 0
replace_copy 6.9 22 22 100 6 0 16 0 0
replace 6.10 19 19 100 4 0 15 0 0
remove_copy 6.11 86 86 100 52 0 33 1 0
remove_copy (2) 6.12 108 108 100 56 1 47 0 4

Table 9.5.: Results for mutating algorithms

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Z3 Coq

iota 7.1 18 18 100 7 0 11 0 0
accumulate 7.2 16 16 100 6 0 10 0 0
inner_product 7.3 21 21 100 6 0 12 3 0
partial_sum 7.4 41 41 100 8 2 30 1 0
adjacent_difference 7.5 35 35 100 10 0 25 0 0
partial_sum_inverse 7.6 20 20 100 4 0 16 0 0
adjacent_difference_inverse 7.7 27 27 100 3 1 21 1 1

Table 9.6.: Results for numeric algorithms
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Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Z3 Coq

stack_equal 8.6 20 20 100 7 0 13 0 0
stack_init 8.7.1 16 16 100 3 0 13 0 0
stack_size 8.7.2 8 8 100 1 0 7 0 0
stack_empty 8.7.3 12 12 100 5 0 7 0 0
stack_full 8.7.4 13 13 100 5 0 8 0 0
stack_top 8.7.5 18 18 100 6 0 12 0 0
stack_push 8.7.6 45 45 100 28 0 17 0 0
stack_pop 8.7.7 34 34 100 20 0 14 0 0

Table 9.7.: Results for Stack functions

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Z3 Coq

stack_size_wd 8.7.2 14 14 100 8 0 6 0 0
stack_empty_wd 8.7.3 14 14 100 8 0 6 0 0
stack_top_wd 8.7.5 14 14 100 8 0 6 0 0
stack_push_wd 8.7.6 17 17 100 3 0 13 1 0
stack_pop_wd 8.7.7 14 14 100 6 0 8 0 0

Table 9.8.: Results for the well-definition of the Stack functions

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Z3 Coq

axiom_size_of_init 8.8.1 17 17 100 12 0 5 0 0
axiom_size_of_push 8.8.2 14 14 100 9 0 5 0 0
axiom_top_of_push 8.8.2 13 13 100 8 0 5 0 0
axiom_pop_of_push 8.8.3 12 12 100 6 0 6 0 0
axiom_size_of_pop 8.8.3 13 13 100 8 0 5 0 0
axiom_push_of_pop_top 8.8.3 17 17 100 9 0 7 1 0

Table 9.9.: Results for Stack axioms
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A. Changes in previous releases

This chapter describes the changes in previous versions of this document. For the most recent changes see
Section .

The version numbers of this document are related to the versioning of Frama-C [3]. The versions of
Frama-C are named consecutively after the elements of the periodic table. Therefore, our version number-
ing (X.Y.Z) are constructed as follows:

X the major number of our tutorial is the atomic number66 of the chemical element after which Frama-C
is named.

Y the Frama-C subrelease number

Z the subrelease number of this tutorial

A.1. New in Version 11.1.1 (June 2015)

• add Chapter 7 on numeric algorithms

– move iota algorithm to numeric algorithms (Section 7.1)

– add accumulate algorithm (Section 7.2)

– add inner_product algorithm (Section 7.3)

– add partial_sum algorithm (Section 7.4)

– add adjacent_difference algorithm (Section 7.5)

A.2. New in Version 11.1.0 (March 2015)

• Use built-in predicates \valid and \valid_read instead of IsValidRange.

• Simplify loop invariants of find_first_of.

• Replace two loop invariants of remove_copy by ACSL lemmas.

• Rename several predicates

– IsEqual 7→ EqualRanges.

– IsMaximum 7→ MaxElement.

– IsMinimum 7→ MinElement.

– Reverse 7→ Reversed.

– IsSorted 7→ Sorted.
66See http://en.wikipedia.org/wiki/Atomic_number
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• Several changes for Stack:

– Rename Stack functions from foo_stack to stack_foo.

– Equality of stacks now ignores the capacity field. This is similar to how equality for objects
of type std::vector<T> is defined. As a consequence stack_full is not well-defined
any more. Other stack functions are not effected.

– Remove all assertions from stack functions (including in axioms).

– Describe predicate Separated in text.

A.3. New in Version 10.1.1 (January 2015)

• use option -wp-split to create simpler (but more) proof obligations

• simplify definition of predicate Count

• add new predicates for lower and upper bounds of ranges and use it in

– max_element

– min_element

– lower_bound

– upper_bound

– equal_range

– fill

• use a new auxiliary assertion in equal_range to enable the complete automatic verification of this
algorithm

• add predicate Unchanged and use it to simplify the specification of several algorithms

– swap_ranges

– reverse

– remove_copy

– stack_push and stack_push_wd

– stack_pop and stack_pop_wd

• add predicate Reverse and use it for more concise specifications of

– reverse_copy

– reverse

• several changes in the two versions of remove_copy

– use predicate HasValue instead of logic function Count

– add predicate PreserveCount

– reformulate logic function RemoveCount

– add predicate StableRemove
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– add predicate RemoveCountMonotonic

– add predicate RemoveCountJump

• use overloading in ACSL to create shorter logic names for Stack

• remove unnecessary labels in several Stack functions

A.4. New in Version 10.1.0 (September 2014)

• remove additional labels in the assumes clauses of some stack function that were necessary due to
an error in Oxygen

• provide a second version of remove_copy in order to explain the specification of the stability of
the algorithms

• coarsen loop assigns of mutating algorithms

• temporarily remove the unique_copy algorithm

A.5. New in Version 9.3.1 (not published)

• specify bounds of the return value of count and fix reads clause of Count predicate

• use an auxiliary function make_pair in the implementation of equal_range

• provide more precise loop assigns clauses for the mutating algorithms

– simplify implementation of fill

– removed the ensures \valid(p) clause in specification of swap

– simplify implementation of swap_ranges

– simplify implementation of copy

– fix implementation of reverse_copy after discovering an undefined behavior

– new implementation of reverse that uses a simple for-loop

– simplify implementation of replace_copy

– refactor specification and simplify implementation of remove_copy

• remove work-around with Pre-label in assumes clauses of stack_push and stack_pop

A.6. New in Version 9.3.0 (December 2013)

• adjustments for Fluorine release of Frama-C

• swap now ensures that its pointer arguments are valid after the function has been called

• change definition of size_type to unsigned int

• change implementation of the iota algorithm . The content of the field a is calculated by increasing
the value val instead of sum val+i.

151



• change implementation of fill.

• The specification/implementation of Stack has been revised by Kim Völlinger [14] and now has a
much better verification rate.

A.7. New in Version 8.1.0 (not published)

• simplified specification and loop annotations of replace_copy

• add binary search variant equal_range

• greatly simplified specification of remove_copy by using the logic function Count

• remove chapter on heap operations

A.8. New in Version 7.1.1 (August 2012)

• improvements with respect to several suggestions and comments of Yannick Moy, e.g., specification
refinements of remove_copy, reverse_copy and iota

• restricted verification of algorithms to WP with Alt-Ergo

• replaced deprecated \valid_range by \valid in definition of IsValidRange

• fixed inconsistencies in the description of the Stack data type

• binary search algorithms can now be proven without additional axioms for integer division

• changed axioms into lemmas to document that provability is expected, even if not currently granted

• adopted new Fraunhofer logo and contact email

A.9. New in Version 7.1.0 (December 2011)

• changed to Frama-C Nitrogen

• changed to Why 2.30

• discussed both plug-ins WP and Jessie

• removed swap_values algorithm

A.10. New in Version 6.1.0 (not published)

• changed definition of Stack

• renamed reset_stack to init_stack

A.11. New in Version 5.1.1 (February 2011)

• prepared algorithms for checking by the new WP plug-in of Frama-C
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• changed to Alt-Ergo Version 0.92, Z3 Version 2.11 and Why 2.27

• added List of user-defined predicates and logic functions

• added remarks on the relation of logical values in C and ACSL

• rewrote section on equal and mismatch

• used a simpler logical function to count elements in an array

• added search algorithm

• added chapter to unite the maximum/minimum algorithms

• added chapter for the new lower_bound, upper_bound and binary_search algorithms

• added swap_values algorithm

• used IsEqual predicate for swap_ranges and copy

• added reverse_copy and reverse algorithms

• added rotate_copy algorithm

• added unique_copy algorithm

• added chapter on specification of the data type Stack

A.12. New in Version 5.1.0 (May 2010)

• adaption to Frama-C Boron and Why 2.26 releases

• changed from the -jessie-no-regions command-line option to using the pragma
SeparationPolicy(value)

A.13. New in Version 4.2.2 (May 2010)

• changed to latest version of CVC3 2.2

• added additional remarks to our implementation of find_first_of

• changed size_type (int) to integer in all specifications

• removed casts in fill and iota

• renamed is_valid_range as IsValidRange

• renamed has_value as HasValue

• renamed predicate all_equal as IsEqual

• extended timeout to 30 sec.

A.14. New in Version 4.2.1 (April 2010)

• added alternative specification of remove_copy algorithm that uses ghost variables
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• added Chapter on heap operations

• added mismatch algorithm

• moved algorithms adjacent_find and min_element from the appendix to chapter on non-
mutating algorithms

• added typedefs size_type and value_type and used them in all algorithms

• renamed is_valid_int_range as is_valid_range

A.15. New in Version 4.2.0 (January 2010)

• complete rewrite of previous release

• adaption to Frama-C Beryllium 2 release
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