CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - A great computer science result
Languages and Machines

- Recursively Enumerable Languages
- Recursive Languages
- Context-Free Languages
- Regular Languages
 - reg exps
 - FSMs
- CFGs
- PDAs
- Turing Machines
- Unrestricted grammars
A Few Questions About REs

- How are REs implemented?
 - Implementing a one-off RE is not so hard
 - How to do it in general?

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., e^+ is the same as ee^*

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation

- ... next comes the math!
Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

- Example alphabets:
 - Binary: $\Sigma = \{0, 1\}$
 - Decimal: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \varepsilon \} \neq \varepsilon$

- Example strings over alphabet $\Sigma = \{0, 1\}$ (binary):
 - 0101
 - 0101110
 - ε
Definition: String concatenation

- String concatenation is indicated by juxtaposition

 \[s_1 = \text{super} \quad s_1s_2 = \text{superhero} \]
 \[s_2 = \text{hero} \]

 • Sometimes also written \(s_1 \cdot s_2 \)

- For any string \(s \), we have \(s\varepsilon = \varepsilon s = s \)

 • You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:

 - If \(s_1 = \text{super} \) from \(\Sigma_1 = \{s,u,p,e,r\} \) and \(s_2 = \text{hero} \) from \(\Sigma_2 = \{h,e,r,o\} \), then \(s_1s_2 = \text{superhero} \) from \(\Sigma_3 = \{e,h,o,p,r,s,u\} \)
Definition: Language

- A language \(L \) is a set of strings over an alphabet.

- Example: All strings of length 1 or 2 over alphabet \(\Sigma = \{a, b, c\} \) that begin with \(a \)
 - \(L = \{ a, aa, ab, ac \} \)

- Example: All strings over \(\Sigma = \{a, b\} \)
 - \(L = \{ \varepsilon, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, \ldots \} \)
 - Language of all strings written \(\Sigma^* \)

- Example: All strings of length 0 over alphabet \(\Sigma \)
 - \(L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \} \)
 - “the set of strings \(s \) such that \(s \) is from \(\Sigma^* \) and has length 0”
 - \(= \{ \varepsilon \} \neq \emptyset \)
Definition: Language (cont.)

Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)

• Give an example element of this language \((123)456-7890 \)
• Are all strings over the alphabet in the language? \(\text{No} \)
• Is there a Ruby regular expression for this language?
 \[/\((\{3,3\}\)\{3,3\}-\{4,4\} / \]

Example: The set of all valid Ruby programs

• Later we’ll see how we can specify this language
• (Regular expressions are useful, but not sufficient)
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

- **Concatenation** L_1L_2 is defined as
 - $L_1L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}$

- **Union** is defined as
 - $L_1 \cup L_2 = \{ x \mid x \in L_1 \text{ or } x \in L_2 \}$

- **Kleene closure** is defined as
 - $L^* = \{ x \mid x = \varepsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \}$
Quiz 1: Which string is **not** in L_3

$L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\}$ \hspace{1em} where $\Sigma = \{a, b, c, d\}$
$L_2 = \{d\}$
$L_3 = L_1L_2$

A. a
B. abd
C. cd
D. d
Quiz 1: Which string is not in L_3

$L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\}$ \quad \text{where} \quad \Sigma = \{a,b,c,d\}
$L_2 = \{d\}$
$L_3 = L_1L_2$

A. a
B. abd
C. cd
D. d
Quiz 2: Which string is not in L_3

$L_1 = \{a, \text{ab}, \text{c}, \text{d}, \varepsilon\}$ \hspace{1cm} \text{where} \hspace{1cm} \Sigma = \{a,b,c,d\}
$L_2 = \{d\}$
$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Quiz 2: Which string is not in L_3?

$L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Regular Expressions: Grammar

Similarly to how we expressed Micro-OCaml we can define a grammar for regular expressions R

$$R ::= \emptyset$$ The empty language

$$| \varepsilon$$ The empty string

$$| \sigma$$ A symbol from alphabet Σ

$$| R_1 R_2$$ The concatenation of two regexps

$$| R_1 | R_2$$ The union of two regexps

$$| R^*$$ The Kleene closure of a regexp
Regular Languages

- Regular expressions denote languages. These are the regular languages
 - aka regular sets

- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^n b^n | n > 0 \}$ (an = sequence of n a’s)

- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Semantics: Regular Expressions (1)

Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each symbol $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

Constants
Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$A</td>
<td>B$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

Operations

There are no other regular expressions over Σ
Terminology etc.

- Regexps apply operations to symbols
 - Generates a set of strings (i.e., a language)
 - (Formal definition shortly)
 - Examples
 - $a \rightarrow \{a\}$
 - $a|b \rightarrow \{a\} \cup \{b\} = \{a, b\}$
 - $a^* \rightarrow \{\epsilon\} \cup \{a\} \cup \{aa\} \cup \ldots = \{\epsilon, a, aa, \ldots \}$

- If $s \in$ language generated by a RE r, we say that r accepts, describes, or recognizes string s
Precedence

- Order in which operators are applied is:
 - Kleene closure * > concatenation > union |
 - $ab|c = (a b) | c \rightarrow \{ab, c\}$
 - $ab^* = a (b^*) \rightarrow \{a, ab, abb \ldots\}$
 - $a|b^* = a | (b^*) \rightarrow \{a, \varepsilon, b, bb, bbb \ldots\}$

- We use parentheses () to clarify
 - E.g., $a(b|c), (ab)^*, (a|b)^*$
 - Using escaped \(if parens are in the alphabet
Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition:

- `/Ruby/` – concatenation of single-symbol REs
- `/Ruby|Regular)/` – union
- `/Ruby)*/` – Kleene closure
- `/Ruby)+/` – same as (Ruby)(Ruby)*
- `/Ruby)?/` – same as (ε|(Ruby)) (// is ε)
- `/[a-z]/` – same as (a|b|c|...|z)
- `/[^0-9]/` – same as (a|b|c|...) for a,b,c,... ∈ Σ - {0..9}
- `^, $` – correspond to extra symbols in alphabet
Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
 - A “machine” for recognizing a regular language
Finite Automaton

- Machine starts in start or initial state
- Repeat until the end of the string s is reached
 - Scan the next symbol $\sigma \in \Sigma$ of the string s
 - Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached

Elements:
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

0 0 1 0 1 1

Accepted?
Yes
Finite Automaton: Example 2

\[\begin{align*}
S_0 &\xrightarrow{1} S_1 \\
S_1 &\xrightarrow{0} S_0
\end{align*} \]

Input: 0 0 1 0 1 0

Accepted? No
Quiz 3: What Language is This?

A. All strings over \(\{0, 1\} \)
B. All strings over \(\{1\} \)
C. All strings over \(\{0, 1\} \) of length 1
D. All strings over \(\{0, 1\} \) that end in 1
Quiz 3: What Language is This?

A. All strings over \(\{0, 1\} \)
B. All strings over \(\{1\} \)
C. All strings over \(\{0, 1\} \) of length 1
D. All strings over \(\{0, 1\} \) that end in 1

Regular expression for this language is \((0|1)^*1\)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a, b, c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acba</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Quiz 4: Which string is **not** accepted?

(a,b,c notation shorthand for three self loops)

A. abbbc
B. ccc
C. ϵ
D. bccca
Quiz 4: Which string is not accepted?

A. abbbbc
B. ccc
C. ε
D. bcca

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

What language does this FA accept?

\[a^* b^* c^* \]

S3 is a dead state – a nonfinal state with no transition to another state.
Finite Automaton: Example 4

Language?

a*b*c* again, so FAs are not unique
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?
- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit
Finite Automaton: Example 5

- **S0** = “Haven't seen anything yet” OR “Last symbol seen was a b”
- **S1** = “Last symbol seen was an a”
- **S2** = “Last two symbols seen were ab”
- **S3** = “Last three symbols seen were abb”
Finite Automaton: Example 5

Language as a regular expression?
 (a|b)*abb
Quiz 5

Over $\Sigma=$\{a,b\}, this FA accepts:

A. A string that contains a single b.
B. Zero or more a’s, followed by a single b, followed by zero or more a’s.
C. Any string in \{a,b\}.
D. A string that starts with b followed by a’s.
Over $\Sigma=$\{a,b\}, this FA accepts:

A. A string that contains a single b.
B. Zero or more a’s, followed by a single b, followed by zero or more a’s.
C. Any string in \{a,b\}.
D. A string that starts with b followed by a’s.
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
- That accepts strings with an odd number of 1s
- That accepts strings containing an even number of 0s and any number of 1s
- That accepts strings containing an odd number of 0s and odd number of 1s
- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s