CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

• **Scanner / lexer / tokenizer** converts program source into **tokens** (keywords, variable names, operators, numbers, etc.) with **regular expressions**
• **Parser** converts tokens into an **AST** (abstract syntax tree) using **context free grammars**
Scanning ("tokenizing")

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.

- Tokens determined with regular expressions
 - Identifiers match regexp \[a-zA-Z_][a-zA-Z0-9_]*\]

- Simplest case: a token is just a string
 - \texttt{type token = string}
 - But representation might be more full featured

- Scanner typically ignores/eliminates whitespace
Simple Scanner in OCaml

```ocaml
type token = string

let tokenize (s:string) = ... (* returns token list *)
;;

let tokenize s =
  let l = String.length s in
  let rec tok sidx slen =
    if sidx >= l then ("",sidx)
    else if String.get s sidx = ' ' then
      tok (sidx+1) 1
    else if (sidx+slen) >= l then
      (String.sub s sidx slen,1)
    else if String.get s (sidx+slen) = ' ' then
      (String.sub s sidx slen, sidx+slen)
    else
      tok sidx (slen+1) in
  let rec alltoks idx =
    let (t,idx') = tok idx 1 in
    if t = "" then []
    else t::alltoks idx' in
  alltoks 0

tokenize "this is a string" = ["this"; "is"; "a"; "string"]
```
type token =
 Tok_Num of char |
 Tok_Sum |
 Tok_END

let tokenize (s:string) = ...
 (* returns token list *)

let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+"
let tokenize str =
 let rec tok pos s =
 if pos >= String.length s then
 [Tok_END]
 else
 if (Str.string_match re_num s pos) then
 let token = Str.matched_string s in
 (Tok_Num token.[0])::(tok (pos+1) s)
 else if (Str.string_match re_add s pos) then
 Tok_Sum::(tok (pos+1) s)
 else
 raise (IllegalExpression "tokenize")
 in
 tok 0 str

 tokenize "1+2" =
 [Tok_Num '1';
 Tok_Sum;
 Tok_Num '2';
 Tok_END]

Uses **Str** library module for regexps
Implementing Parsers

- Many efficient techniques for parsing
 - I.e., for turning strings into parse trees
 - Examples
 - LL(k), SLR(k), LR(k), LALR(k)...
 - Take CMSC 430 for more details

- One simple technique: recursive descent parsing
 - This is a top-down parsing algorithm
 - Other algorithms are bottom-up
Top-Down Parsing

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }
Bottom-up Parsing

E \rightarrow \text{id} = n \mid \{ \text{L} \}
L \rightarrow E ; L \mid \varepsilon

Show parse tree for
\{ x = 3 ; \{ y = 4 ; \} ; \}

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)

- Example grammar
 - \(S \rightarrow aA, A \rightarrow Bc, B \rightarrow b \)

- Example parse
 - \(abc \Rightarrow aBc \Rightarrow aA \Rightarrow S \)
 - Derivation happens in reverse

- Something to look forward to in CMSC 430

- Complicated to use; requires tool support
 - \textit{Bison, yacc} produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table

- Shift-reduce parsers handle more grammars
 - Error messages may be confusing

- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

- **Goal**
 - Determine if we can produce the string to be parsed from the grammar's start symbol

- **Approach**
 - Recursively replace nonterminal with RHS of production

- **At each step, we'll keep track of two facts**
 - What tree node are we trying to match?
 - What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal
Recursive Descent Parsing (cont.)

At each step, 3 possible cases

• If we’re trying to match a terminal
 ➢ If the lookahead is that token, then succeed, advance the lookahead, and continue

• If we’re trying to match a nonterminal
 ➢ Pick which production to apply based on the lookahead

• Otherwise fail with a parsing error
Parsing Example

\[E \rightarrow \text{id} = n \mid \{ \text{L} \} \]
\[L \rightarrow E \; ; \; L \mid \varepsilon \]

• Here \(n \) is an integer and \(\text{id} \) is an identifier

- One input might be
 - \(\{ \; x = 3; \; \{ \; y = 4; \; \}; \; \} \)
 - This would get turned into a list of tokens:
 \[\{ \; x = 3 ; \; \{ \; y = 4 \; ; \; \} \; ; \; \} \]
 - And we want to turn it into a parse tree
Parsing Example (cont.)

\[E \rightarrow id = n \mid \{ L \} \]

\[L \rightarrow E ; L \mid \varepsilon \]

\{ x = 3 ; \{ y = 4 ; \} ; \}

lookahead
Recursive Descent Parsing (cont.)

- **Key step**
 - Choosing which production should be selected

- **Two approaches**
 - **Backtracking**
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - **Predictive parsing**
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
First Sets

Motivating example

- The lookahead is x
- Given grammar $S \rightarrow xyz \mid abc$

 Select $S \rightarrow xyz$ since 1st terminal in RHS matches x

- Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$

 Select $S \rightarrow A$, since A can derive string beginning with x

In general

- Choose a production that can derive a sentential form beginning with the lookahead
- Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

Definition

• First(γ), for any terminal or nonterminal γ, is the set of initial terminals of all strings that γ may expand to
• We’ll use this to decide what production to apply

Examples

• Given grammar S → xyz | abc
 • First(xyz) = { x }, First(abc) = { a }
 • First(S) = First(xyz) U First(abc) = { x, a }

• Given grammar S → A | B A → x | y B → z
 • First(x) = { x }, First(y) = { y }, First(A) = { x, y }
 • First(z) = { z }, First(B) = { z }
 • First(S) = { x, y, z }
Calculating First(γ)

- For a terminal a
 - First(a) = { a }

- For a nonterminal N
 - If $N \rightarrow \varepsilon$, then add ε to First(N)
 - If $N \rightarrow \alpha_1 \alpha_2 \ldots \alpha_n$, then (note the α_i are all the symbols on the right side of one single production):
 - Add First($\alpha_1\alpha_2 \ldots \alpha_n$) to First(N), where First($\alpha_1\alpha_2 \ldots \alpha_n$) is defined as
 - First(α_1) if $\varepsilon \notin$ First(α_1)
 - Otherwise (First(α_1) – ε) \cup First($\alpha_2 \ldots \alpha_n$)
 - If $\varepsilon \in$ First(α_i) for all i, $1 \leq i \leq k$, then add ε to First(N)
First() Examples

\[E \rightarrow id = n | \{ \ L \} \]
\[L \rightarrow E ; L | \varepsilon \]

First(id) = \{ id \}
First("=") = \{ "=" \}
First(n) = \{ n \}
First("{")= \{ "{" \}
First("{")= \{ "{" \}
First(";"='') = \{ ";;" \}
First(E) = \{ id, "{" \}
First(L) = \{ id, "{", \varepsilon \}
Quiz #1

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \varepsilon
\end{align*}
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #1

Given the following grammar:

\[
S \rightarrow aAB \\
A \rightarrow CBC \\
B \rightarrow b \\
C \rightarrow cC \mid \varepsilon
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \epsilon
\end{align*}
\]

What is \textbf{First}(B)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

S → aAB
A → CBC
B → b
C → cC | ε

What is First(B)?
A. {a}
B. {b, c}
C. {b}
D. {c}
What is $\text{First}(A)$?

A. \{a\}
B. \{b,c\}
C. \{b\}
D. \{c\}
Quiz #3

Given the following grammar:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Right-hand side</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aAB</td>
</tr>
<tr>
<td>A</td>
<td>CBC</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>cC</td>
</tr>
</tbody>
</table>

What is **First(A)**?

A. {a}
B. {b,c}
C. {b}
D. {c}
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok a`
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not `a`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
match_tok in OCaml

```ocaml
let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
  match !tok_list with
  (* checks lookahead; advances on match *)
  | (h::t) when a = h -> tok_list := t
  | _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
  match !tok_list with
  [] -> raise (ParseError "no tokens")
  | (h::t) -> h
```
Parsing Nonterminals

- The body of `parse_N` for a nonterminal `N` does the following
 - Let `N → β₁ | ... | βₖ` be the productions of `N`
 - Here `βᵢ` is the entire right side of a production - a sequence of terminals and nonterminals
 - Pick the production `N → βᵢ` such that the lookahead is in `First(βᵢ)`
 - It must be that `First(βᵢ) ∩ First(βⱼ) = ∅` for `i ≠ j`
 - If there is no such production, but `N → ε` then return
 - Otherwise fail with a parse error
 - Suppose `βᵢ = α₁ α₂ ... αₙ`. Then call `parse_α₁(); ... ; parse_αₙ()` to match the expected right-hand side, and return
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - First(xyz) = \{ x \}, First(abc) = \{ a \}

- Parser

  ```ml
  let parse_S () =
    if lookahead () = "x" then (* S \rightarrow xyz *)
      (match_tok "x";
       match_tok "y";
       match_tok "z")
    else if lookahead () = "a" then (* S \rightarrow abc *)
      (match_tok "a";
       match_tok "b";
       match_tok "c")
    else raise (ParseError "parse_S")
  ```
Another Example Parser

- Given grammar \(S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z \)
 - \(\text{First}(A) = \{ x, y \} \), \(\text{First}(B) = \{ z \} \)

- Parser:

  ```
  let rec parse_S () =
      if lookahead () = "x" ||
        lookahead () = "y" then
        parse_A () (* S → A *)
      else if lookahead () = "z" then
        parse_B () (* S → B *)
      else raise (ParseError "parse_S")
  
  and parse_A () =
      if lookahead () = "x" then
        match_tok "x" (* A → x *)
      else if lookahead () = "y" then
        match_tok "y" (* A → y *)
      else raise (ParseError "parse_A")
  
  and parse_B () = ...
  ```
Example

E → id = n | { L }
L → E ; L | ε

First(E) = { id, "{" }

Parser:

let rec parse_E () =
 if lookahead () = "id" then
 (* E → id = n *)
 (match_tok "id";
 match_tok ";=";
 match_tok "n")
 else if lookahead () = "{" then
 (* E → { L } *)
 (match_tok "{";
 parse_L ();
 match_tok "}")
 else raise (ParseError "parse_A")

and parse_L () =
 if lookahead () = "id"
 || lookahead () = "{" then
 (* L → E ; L *)
 (parse_E ()
 match_tok ";");
 parse_L ()
 else
 (* L → ε *)
 ()
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree

Examples

- Grammar

 \[
 S \rightarrow xyz \\
 S \rightarrow abc
 \]

- String “xyz”

  ```
  parse_S ()
  match_tok “x” / \  
  match_tok “y” x y z
  match_tok “z”
  ```

- Grammar

 \[
 S \rightarrow A \mid B \\
 A \rightarrow x \mid y \\
 B \rightarrow z
 \]

- String “x”

  ```
  parse_S ()
  parse_A ()
  match_tok “x”
  ```
Things to Notice (cont.)

- This is a predictive parser
 - Because the lookahead determines exactly which production to use
- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ε
 - Possible infinite recursion
- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

Consider parsing the grammar $E \rightarrow ab \mid ac$

- $\text{First}(ab) = a$
- $\text{First}(ac) = a$

Parser cannot choose between

Parser fails whenever $A \rightarrow \alpha_1 \mid \alpha_2$ and

- $\text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \epsilon$ or \emptyset

Solution

- Rewrite grammar using left factoring
Left Factoring Algorithm

- Given grammar
 - \(A \rightarrow x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta \)

- Rewrite grammar as
 - \(A \rightarrow xL \mid \beta \)
 - \(L \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n \)

- Repeat as necessary

- Examples
 - \(S \rightarrow ab \mid ac \) \(\Rightarrow \) \(S \rightarrow aL \)
 - \(L \rightarrow b \mid c \)
 - \(S \rightarrow abcA \mid abB \mid a \) \(\Rightarrow \) \(S \rightarrow aL \)
 - \(L \rightarrow bcA \mid bB \mid \varepsilon \)
 - \(L \rightarrow bcA \mid bB \mid \varepsilon \) \(\Rightarrow \) \(L \rightarrow bL' \mid \varepsilon \)
 - \(L' \rightarrow cA \mid B \)
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to choose between productions

Example
- Consider parsing the grammar $E \rightarrow a+b \mid a*b \mid a$

```haskell
let parse_E () =
  match_tok "a"; (* common prefix *)
  if lookahead () = "+" then (* $E \rightarrow a+b$ *)
    (match_tok "+";
     match_tok "b")
  else if lookahead () = "*" then (* $E \rightarrow a*b$ *)
    (match_tok "*");
    match_tok "b")
  else () (* $E \rightarrow a$ *)
Left Recursion

Consider grammar \( S \rightarrow Sa \mid \varepsilon \)

• Try writing parser

\[
\text{let rec parse\_S () =}
\]
\[
\text{if lookahead () = “a” then}
\]
\[
\text{(parse\_S ();}
\]
\[
\text{match\_tok “a”) (* S \rightarrow Sa *)}
\]
\[
\text{else ()}
\]

• Body of \text{parse\_S ()} has an infinite loop!
  
  ➢ Infinite loop occurs in grammar with \text{left recursion}
Right Recursion

Consider grammar \( S \rightarrow aS \mid \epsilon \)

- Try writing parser

```ocaml
let rec parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 parse_S () (* S → aS *)
 else ()
```

- Will `parse_S()` infinite loop?
  - Invoking `match_tok` will advance lookahead, eventually stop
- Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

- Given grammar
  - $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta$
    - $\beta$ must exist or derivation will not yield string

- Rewrite grammar as (repeat as needed)
  - $A \rightarrow \beta L$
  - $L \rightarrow \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \varepsilon$

- Replaces left recursion with right recursion

- Examples
  - $S \rightarrow Sa \mid \varepsilon$  $\Rightarrow S \rightarrow L$  $L \rightarrow aL \mid \varepsilon$
  - $S \rightarrow Sa \mid Sb \mid c$  $\Rightarrow S \rightarrow cL$  $L \rightarrow aL \mid bL \mid \varepsilon$
Quiz #4

What Does the following code parse?

```hs
let parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 match_tok "x";
 match_tok "y")
 else if lookahead () = "q" then
 match_tok "q"
 else
 raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #4

What Does the following code parse?

```fsharp
let parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 match_tok "x";
 match_tok "y")
 else if lookahead () = "q" then
 match_tok "q"
 else
 raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #5

What Does the following code parse?

```plaintext
let rec parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 parse_S ())
 else if lookahead () = "q" then
 (match_tok "q";
 match_tok "p")
 else
 raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Quiz #5

What Does the following code parse?

```plaintext
let rec parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 parse_S ())
 else if lookahead () = "q" then
 (match_tok "q";
 match_tok "p")
 else
 raise (ParseError "parse_S")
```

A.  S -> aS | qp
B.  S -> a | S | qp
C.  S -> aqSp
D.  S -> a | q
Quiz #6

Can recursive descent parse this grammar?

S -> aBa
B -> bC
C -> ε | Cc

A. Yes
B. No
Can recursive descent parse this grammar?

\[
\begin{align*}
S & \rightarrow aBa \\
B & \rightarrow bC \\
C & \rightarrow \epsilon \mid Cc
\end{align*}
\]

A. Yes

B. No
(due to left recursion)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
  - Example
    - Parentheses
    - Extra nonterminals for precedence
  - This extra stuff is needed for parsing

- But when we want to reason about languages
  - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An **abstract syntax tree** is a more compact, abstract representation of a parse tree, with only the essential parts.

![Parse Tree](image1)

![AST](image2)
Abstract Syntax Trees (cont.)

- Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language
  - Note that grammars describe trees
    - So do OCaml datatypes, as we have seen already
  - $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)$

```
 *
 / \
 c +
 / \
 b d
```
Producing an AST

To produce an AST, we can modify the `parse()` functions to construct the AST along the way:

- `match_tok a` returns an AST node (leaf) for `a`.
- `parse_A` returns an AST node for `A`.
- AST nodes for RHS of production become children of LHS node.

Example:

```
let rec parse_S () =
 if lookahead () = "a" then
 let n1 = match_tok "a" in
 let n2 = parse_A () in
 Node(n1,n2)
 else raise ParseError "parse_S"
```

```
S → aA
```

```
S
/ \
A a
```

```
```
```
```
```
```
The Compilation Process

Lexing
Lexing
regexps
DFAs

Parsing
Parsing
CFGs
PDAs

Compiler
Compiler

source
program

Compiler
Compiler

target
program

AST

Intermediate
Code
Generation

Optimization

(may not actually
be constructed)