CMSC 330: Organization of Programming Languages

Operational Semantics
Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Styles of Semantics

- **Denotational semantics**: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation

- **Operational semantics**: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation

- **Axiomatic semantics**
 - Describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs
This Course: Operational Semantics

- We will show how an operational semantics may be defined for Micro-Ocaml
 - And develop an interpreter for it, along the way

- Approach: use rules to define a judgment

 \[e \Rightarrow v \]

 - Says “\(e\) evaluates to \(v\)”
 - \(e\): expression in Micro-OCaml
 - \(v\): value that results from evaluating \(e\)
Definitional Interpreter

- It turns out that the rules for judgment $e \Rightarrow v$ can be easily turned into idiomatic OCaml code
 - The language’s expressions e and values v have corresponding OCaml datatype representations exp and value
 - The semantics is represented as a function

\[
\text{eval} : \text{exp} \rightarrow \text{value}
\]

- This way of presenting the semantics is referred to as a definitional interpreter
 - The interpreter defines the language’s meaning
Micro-OCaml Expression Grammar

\[e ::= x \mid n \mid e + e \mid \text{let } x = e \text{ in } e \]

- `e`, `x`, `n` are meta-variables that stand for categories of syntax
 - `x` is any identifier (like `z, y, foo`)
 - `n` is any numeral (like `1, 0, 10, -25`)
 - `e` is any expression (here defined, recursively!)

- Concrete syntax of actual expressions in black
 - Such as `let, +, z, foo, in, ...`

- `::=` and `|` are meta-syntax used to define the syntax of a language (part of “Backus-Naur form,” or BNF)
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

Examples

- 1 is a numeral \(n \) which is an expression \(e \)
- \(1 + z \) is an expression \(e \) because
 - 1 is an expression \(e \),
 - \(z \) is an identifier \(x \), which is an expression \(e \), and
 - \(e + e \) is an expression \(e \)
- \text{let } z = 1 \text{ in } 1 + z \) is an expression \(e \) because
 - \(z \) is an identifier \(x \),
 - 1 is an expression \(e \),
 - \(1 + z \) is an expression \(e \), and
 - \text{let } x = e \text{ in } e \) is an expression \(e \)
Abstract Syntax = Structure

Here, the grammar for e is describing its abstract syntax tree (AST), i.e., e’s structure

$$e ::= x | n | e + e | \text{let } x = e \text{ in } e$$

corresponds to (in defn interpreter)

```plaintext
type id = string
type num = int
type exp =
  | Ident of id
  | Num of num
  | Plus of exp * exp
  | Let of id * exp * exp
```
The parsing problem is how to convert program text into an AST, i.e., a value of the type below

- We defer worrying about this problem until later
 - Hint: Relates to using something like regular expressions to read in text and construct values like the following from it

```haskell
type id = string
type num = int
type exp =
    | Ident of id
    | Num of num
    | Plus of exp * exp
    | Let of id * exp * exp
```
Values

- An expression’s final result is a value. What can values be?

 \[v ::= n \]

- Just numerals for now
 - In terms of an interpreter’s representation:
 \[\text{type } value = \text{int} \]
 - In a full language, values \(v \) will also include booleans \((\text{true}, \text{false}) \), strings, functions, …
Defining the Semantics

- Use rules to define judgment $e \Rightarrow v$

These rules will allow us to show things like

- $1+3 \Rightarrow 4$
 - $1+3$ is an expression e, and 4 is a value v
 - This judgment claims that $1+3$ evaluates to 4
 - We use rules to prove it to be true

- $\text{let } \text{foo}=1+2 \text{ in } \text{foo}+5 \Rightarrow 8$
- $\text{let } f=1+2 \text{ in } \text{let } z=1 \text{ in } f+z \Rightarrow 4$
Rules as English Text

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$

- Suppose e is a let expression let $x = e_1$ in e_2
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2 \{v_1/x\}$ evaluates to v_2, i.e., $e_2 \{v_1/x\} \Rightarrow v_2$
 - Here, $e_2 \{v_1/x\}$ means “the expression after substituting occurrences of x in e_2 with v_1”
 - Then e evaluates to v_2, i.e., let $x = e_1$ in $e_2 \Rightarrow v_2$
Rules of Inference

- We can use a more compact notation for the rules we just presented: rules of inference
 - Has the following format
 \[
 \begin{array}{c}
 H_1 \quad \ldots \quad H_n \\
 \hline \\
 C
 \end{array}
 \]
 - Says: if the conditions $H_1 \ldots H_n$ ("hypotheses") are true, then the condition C ("conclusion") is true
 - If $n=0$ (no hypotheses) then the conclusion automatically holds; this is called an axiom

- We will use inference rules to speak about evaluation
Rules of Inference: Num and Sum

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$

\[e_1 \Rightarrow n_1 \quad e_2 \Rightarrow n_2 \quad n_3 \text{ is } n_1 + n_2 \]
\[e_1 + e_2 \Rightarrow n_3 \]
Rules of Inference: Let

- Suppose e is a let expression $\text{let } x = e_1 \text{ in } e_2$
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
 - Then e evaluates to v_2, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$

$e_1 \Rightarrow v_1 \quad e_2\{v_1/x\} \Rightarrow v_2$

$\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$
Derivations

- When we apply rules to an expression in succession, we produce a derivation
 - It’s a kind of tree, rooted at the conclusion

- Produce a derivation by goal-directed search
 - Pick a rule that could prove the goal
 - Then repeatedly apply rules on the corresponding hypotheses

 - Goal: Show that \(\text{let } x = 4 \text{ in } x+3 \Rightarrow 7 \)
Derivations

<table>
<thead>
<tr>
<th>n ⇒ n</th>
<th>e1 ⇒ n1</th>
<th>e2 ⇒ n2</th>
<th>n3 is n1+n2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e1 + e2 ⇒ n3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e1 ⇒ v1</th>
<th>e2{v1/x} ⇒ v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>let x = e1 in e2 ⇒ v2</td>
<td></td>
</tr>
</tbody>
</table>

Goal: show that

let x = 4 in x+3 ⇒ 7

\[
4 ⇒ 4 \quad 3 ⇒ 3 \quad 7 \text{ is } 4+3
\]

\[
4 ⇒ 4 \quad 4+3 ⇒ 7
\]

\[
let \ x = 4 \ in \ x+3 ⇒ 7
\]
What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a) \[
2 \Rightarrow 2 \quad 3 + 8 \Rightarrow 11 \\
\hline
2 + (3 + 8) \Rightarrow 13
\]

(b) \[
3 \Rightarrow 3 \quad 8 \Rightarrow 8 \\
\hline
3 + 8 \Rightarrow 11 \quad 2 \Rightarrow 2 \\
\hline
2 + (3 + 8) \Rightarrow 13
\]

(c) \[
8 \Rightarrow 8 \\
3 \Rightarrow 3 \\
11 \text{ is } 3+8 \\
\hline
2 \Rightarrow 2 \quad 3 + 8 \Rightarrow 11 \quad 13 \text{ is } 2+11 \\
\hline
2 + (3 + 8) \Rightarrow 13
\]
Quiz 1

What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)

\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)

\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
\hline
2 & \Rightarrow 2 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)

\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 & \text{is } 3+8 \\
\hline
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
13 & \text{is } 2+11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
The style of rules lends itself directly to the implementation of an interpreter as a recursive function.

```ocaml
let rec eval (e:exp):value = 
  match e with 
  | Ident x -> (* no rule *) failwith "no value" 
  | Num n -> n 
  | Plus (e1,e2) ->
    let n1 = eval e1 in 
    let n2 = eval e2 in 
    let n3 = n1+n2 in 
    n3 
  | Let (x,e1,e2) ->
    let v1 = eval e1 in 
    let e2' = subst v1 x e2 in 
    let v2 = eval e2' in v2
```

Trace of evaluation of `eval` function corresponds to a derivation by the rules:

```
  n ⇒ n
  e1 ⇒ n1  e2 ⇒ n2  n3 is n1+n2
  e1 + e2 ⇒ n3
  e1 ⇒ v1  e2{v1/x} ⇒ v2
  let x = e1 in e2 ⇒ v2
```
Derivations = Interpreter Call Trees

\[
\begin{align*}
4 & \Rightarrow 4 \\
3 & \Rightarrow 3 \\
7 & \text{ is } 4+3
\end{align*}
\]

\[
\begin{align*}
4 & \Rightarrow 4 \\
4+3 & \Rightarrow 7
\end{align*}
\]

Let \(x = 4 \) in \(x+3 \Rightarrow 7 \)

Has the same shape as the recursive call tree of the interpreter:

\[
\begin{align*}
eval \; \text{Num} \; 4 & \Rightarrow 4 \\
eval \; \text{Num} \; 3 & \Rightarrow 3 \\
7 & \text{ is } 4+3
\end{align*}
\]

\[
\begin{align*}
eval \; (\text{subst} \; 4 \; \text{"x"})
\end{align*}
\]

\[
\begin{align*}
eval \; \text{Num} \; 4 & \Rightarrow 4 \\
\text{Plus}(\text{Ident("x"),Num} \; 3) & \Rightarrow 7
\end{align*}
\]

\[
\begin{align*}
eval \; \text{Let("x",Num} \; 4,\text{Plus}(\text{Ident("x"),Num} \; 3)) & \Rightarrow 7
\end{align*}
\]
Semantics Defines Program Meaning

- $e \Rightarrow v$ holds if and only if a *proof* can be built
 - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
 - No proof means $e \not\Rightarrow v$
- Proofs can be constructed bottom-up
 - In a goal-directed fashion
- Thus, function $\text{eval } e = \{v \mid e \Rightarrow v\}$
 - Determinism of semantics implies at most one element for any e
- So: Expression e *means* v
Environment-style Semantics

The previous semantics uses substitution to handle variables
 • As we evaluate, we replace all occurrences of a variable x with values it is bound to

An alternative semantics, closer to a real implementation, is to use an environment
 • As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them
Environments

Mathematically, an environment is a partial function from identifiers to values

- If A is an environment, and x is an identifier, then $A(x)$ can either be …
- … a value (intuition: the variable has been declared)
- … or undefined (intuition: variable has not been declared)

An environment can also be thought of as a table

- If A is

<table>
<thead>
<tr>
<th>Id</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>2</td>
</tr>
</tbody>
</table>

- then $A(x)$ is 0, $A(y)$ is 2, and $A(z)$ is undefined
Notation, Operations on Environments

- \(\bullet \) is the empty environment (undefined for all ids)
- \(x: v \) is the environment that maps \(x \) to \(v \) and is undefined for all other ids
- If \(A \) and \(A' \) are environments then \(A, A' \) is the environment defined as follows:
 \[
 (A, A')(x) = \begin{cases}
 A'(x) & \text{if } A'(x) \text{ defined} \\
 A(x) & \text{if } A'(x) \text{ undefined but } A(x) \text{ defined} \\
 \text{undefined} & \text{otherwise}
 \end{cases}
 \]
- So: \(A' \) shadows definitions in \(A \)
- For brevity, can write \(\bullet, A \) as just \(A \)
Semantics with Environments

- The environment semantics changes the judgment
 \[e \Rightarrow v \]
 to be
 \[\text{A; } e \Rightarrow v \]
 where \text{A} is an environment
 - Idea: \text{A} is used to give values to the identifiers in \text{e}
 - \text{A} can be thought of as containing declarations made up to \text{e}

- Previous rules can be modified by
 - Inserting \text{A} everywhere in the judgments
 - Adding a rule to look up variables \text{x} in \text{A}
 - Modifying the rule for \text{let} to add \text{x} to \text{A}
Environment-style Rules

\[A(x) = v \]

\[A; x \Rightarrow v \]

\[A; n \Rightarrow n \]

Look up variable \(x \) in environment \(A \)

\[A; e_1 \Rightarrow v_1 \]

\[A, x: v_1; e_2 \Rightarrow v_2 \]

\[A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \]

Extend environment \(A \) with mapping from \(x \) to \(v_1 \)

\[A; e_1 \Rightarrow n_1 \]

\[A; e_2 \Rightarrow n_2 \]

\[n_3 \text{ is } n_1 + n_2 \]

\[A; e_1 + e_2 \Rightarrow n_3 \]
Quiz 2

What is a derivation of the following judgment?

- ; let x=3 in x+2 ⇒ 5

(a)

\[
\begin{align*}
&x \Rightarrow 3 \quad 2 \Rightarrow 2 \quad 5 \text{ is } 3+2 \\
&3 \Rightarrow 3 \quad x+2 \Rightarrow 5 \\
&\text{let } x=3 \text{ in } x+2 \Rightarrow 5
\end{align*}
\]

(b)

\[
\begin{align*}
&x:3; \ x \Rightarrow 3 \quad x:3; \ 2 \Rightarrow 2 \quad 5 \text{ is } 3+2 \\
&\text{let } x=3 \text{ in } x+2 \Rightarrow 5
\end{align*}
\]

(c)

\[
\begin{align*}
&x:2; \ x \Rightarrow 3 \quad x:2; \ 2 \Rightarrow 2 \quad 5 \text{ is } 3+2 \\
&\text{let } x=3 \text{ in } x+2 \Rightarrow 5
\end{align*}
\]
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)
\[
\begin{align*}
&x \Rightarrow 3 & 2 \Rightarrow 2 & \text{5 is } 3+2 \\
\hline
&3 \Rightarrow 3 & x+2 \Rightarrow 5
\end{align*}
\]

(b)
\[
\begin{align*}
&\text{x:3; } x \Rightarrow 3 & \text{x:3; } 2 \Rightarrow 2 & \text{5 is } 3+2 \\
\hline
&\text{•; 3 } \Rightarrow 3 & \text{x:3; } x+2 \Rightarrow 5
\end{align*}
\]

(c)
\[
\begin{align*}
&\text{x:2; } x \Rightarrow 3 & \text{x:2; } 2 \Rightarrow 2 & \text{5 is } 3+2 \\
\hline
&\text{•; let x=3 in x+2 } \Rightarrow 5
\end{align*}
\]
Definitional Interpreter: Environments

type env = (id * value) list

let extend env x v = (x,v)::env

let rec lookup env x =
 match env with
 | [] -> failwith "no var"
 | (y,v)::env' ->
 if x = y then v
 else lookup env' x
let rec eval env e =
 match e with
 Ident x -> lookup env x
| Num n -> n
| Plus (e1,e2) ->
 let n1 = eval env e1 in
 let n2 = eval env e2 in
 let n3 = n1+n2 in
 n3
| Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env’ = extend env x v1 in
 let v2 = eval env’ e2 in v2
Adding Conditionals to Micro-OCaml

\[e ::= x | v | e + e | \text{let } x = e \text{ in } e \]
\[| \text{eq0 } e | \text{if } e \text{ then } e \text{ else } e \]

\[v ::= n | \text{true} | \text{false} \]

- In terms of interpreter definitions:

```plaintext
type exp =
| Val of value
| ... (* as before *)
| Eq0 of exp
| If of exp * exp * exp

type value =
| Int of int
| Bool of bool
```
Rules for Eq0 and Booleans

- Booleans evaluate to themselves
 - $A; false \Rightarrow false$

- $eq0$ tests for 0
 - $A; eq0 0 \Rightarrow true$
 - $A; eq0 3+4 \Rightarrow false$

- $A; e \Rightarrow 0$
- $A; eq0 e \Rightarrow true$
- $A; e \Rightarrow v \quad v \neq 0$
- $A; eq0 e \Rightarrow false$
Rules for Conditionals

Notice that only one branch is evaluated

• $A; \text{if eq0 0 then 3 else 4} \Rightarrow 3$
• $A; \text{if eq0 1 then 3 else 4} \Rightarrow 4$
Quiz 3

What is the derivation of the following judgment?

\[\text{•; if eq0 3-2 then 5 else 10} \Rightarrow 10 \]

(a)
\[\text{•; 3} \Rightarrow 3 \quad \text{•; 2} \Rightarrow 2 \quad \text{3-2 is 1} \]
\[\text{•; eq0 3-2} \Rightarrow \text{false} \quad \text{•; 10} \Rightarrow 10 \]
\[\text{•; if eq0 3-2 then 5 else 10} \Rightarrow 10 \]

(b)
\[3 \Rightarrow 3 \quad 2 \Rightarrow 2 \]
\[3-2 \text{ is 1} \]
\[\text{eq0 3-2} \Rightarrow \text{false} \]
\[\text{10} \Rightarrow 10 \]
\[\text{if eq0 3-2 then 5 else 10} \Rightarrow 10 \]

(c)
\[\text{•; 3} \Rightarrow 3 \]
\[\text{•; 2} \Rightarrow 2 \]
\[3-2 \text{ is 1} \]
\[\text{•; 3-2} \Rightarrow 1 \quad 1 \neq 0 \]
\[\text{•; eq0 3-2} \Rightarrow \text{false} \]
\[\text{•; 10} \Rightarrow 10 \]
\[\text{•; if eq0 3-2 then 5 else 10} \Rightarrow 10 \]
Quiz 3

What is the derivation of the following judgment?

•; if eq0 3-2 then 5 else 10 ⇒ 10

(a)
•; 3 ⇒ 3 •; 2 ⇒ 2 3-2 is 1

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10

(b)
3 ⇒ 3 2 ⇒ 2
3-2 is 1

eq0 3-2 ⇒ false 10 ⇒ 10

if eq0 3-2 then 5 else 10 ⇒ 10

(c)
•; 3 ⇒ 3
•; 2 ⇒ 2 3-2 is 1

•; 3-2 ⇒ 1 1 ≠ 0

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10
let rec eval env e =
 match e with
 | Ident x -> lookup env x
 | Val v -> v
 | Plus (e1,e2) ->
 let Int n1 = eval env e1 in
 let Int n2 = eval env e2 in
 let n3 = n1+n2 in
 Int n3
 | Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env' = extend env x v1 in
 let v2 = eval env' e2 in v2
 | Eq0 e1 ->
 let Int n = eval env e1 in
 if n=0 then Bool true else Bool false
 | If (e1,e2,e3) ->
 let Bool b = eval env e1 in
 if b then eval env e2
 else eval env e3
Quick Look: Type Checking

- Inference rules can also be used to specify a program’s **static semantics**
 - I.e., the rules for type checking
- We won’t cover this in depth in this course, but here is a flavor.

- Types $t ::= \text{bool} \mid \text{int}$
- Judgment $\vdash e : t$ says e has type t
 - We define inference rules for this judgment, just as with the operational semantics
Some Type Checking Rules

- Boolean constants have type `bool`

 \[\vdash \text{true} : \text{bool} \quad \vdash \text{false} : \text{bool} \]

- Equality checking has type `bool` too

 - Assuming its target expression has type `int`

 \[\vdash e : \text{int} \quad \vdash \text{eq0 e} : \text{bool} \]

- Conditionals

 \[\vdash e_1 : \text{bool} \quad \vdash e_2 : t \quad \vdash e_3 : t \quad \vdash \text{if e1 then e2 else e3} : t \]
Handling Binding

- What about the types of variables?
 - Taking inspiration from the environment-style operational semantics, what could you do?

- Change judgment to be $G \vdash e : t$ which says e has type t under type environment G
 - G is a map from variables x to types t
 - Analogous to map A, maps vars to types, not values

- What would be the rules for `let`, and variables?
Type Checking with Binding

- **Variable lookup**

 \[G(x) = t \]

 \[G \vdash x : t \]

 analogous to

 \[A(x) = v \]

 \[A; x \Rightarrow v \]

- **Let binding**

 \[G \vdash e_1 : t_1 \quad G, x : t_1 \vdash e_2 : t_2 \]

 \[G \vdash \text{let } x = e_1 \text{ in } e_2 : t_2 \]

 analogous to

 \[A; e_1 \Rightarrow v_1 \quad A, x : v_1; e_2 \Rightarrow v_2 \]

 \[A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \]
Scaling up

Operational semantics (and similarly styled typing rules) can handle full languages
 • With records, recursive variant types, objects, first-class functions, and more

Provides a concise notation for explaining what a language does. Clearly shows:
 • Evaluation order
 • Call-by-value vs. call-by-name
 • Static scoping vs. dynamic scoping
 • ... We may look at more of these later