
CMSC 330, Practice Problems 1 (SOLUTIONS)

1. Programming languages
a. Explain how goals for programming languages have changed since the 1960’s.

 Shifted from efficiency to ease-of-programming
b. List 2 desirable attributes for a programming language where Ruby is better

than C. Explain why.
 Naturalness of application – Text processing is easier in Ruby
 Cost of use – Small Ruby programs are simpler/quicker to write

c. List 2 methods for executing a program. Which method is used by Ruby?
 Interpretation & compilation. Ruby is interpreted.

2. Ruby basics

a. Write a Ruby method foo that takes an integer as a parameter. Call foo with 2
as its argument. Circle & label the formal and actual parameters in your code.

 def foo(x) … end ; foo(2) ; // x = formal param, 2 = actual parameter
b. Using different Ruby control statements, write 4 code fragments that iterate

from i=1 to i=10.
 1.upto(10) {|i| puts i; }
 (1..10).each {|i| puts i; }
 for i in (1..10) do puts i; end
 i=1; while i<=10 do puts i; i+=1; end
 i=1; do puts i; break if (i+=1)>10 end

c. Explain the difference between explicit and implicit variable declarations.
 Explicit – declaration statements declare type of each variable used
 Implicit – first use of a variable declares it and determines its type

d. List two advantages of static types.
 Helps prevent subtle errors, catches more type errors at compile time

e. Using Ruby, write a class Teacher that contains an integer field students and
an integer field totalStudents that is shared across all objects of class Teacher.

 class Teacher
@@totalStudents = 0
def initialize

@students = 0
@@totalStudents += @students

end
 end

f. Give an example of shallow (reference) copy in Ruby.
 x = “a” ; y = x

g. Give an example of testing for structural equality in Ruby.
 x == y

3. Ruby advanced features
a. Describe the string matched by the Ruby regular expression /(3{2})/ ?

 $1 = exactly 2 3’s, i.e., “33”
b. Describe the string matched by the Ruby regular expression /([A-Z])/ ?

 $1 = any single uppercase letter
c. Describe the string matched by the Ruby regular expression /([A-Z]*[0-9])/ ?

 $1 = 0 or more uppercase letters followed by a single digit
d. Describe the string matched by the Ruby regular expression /(0$)/ ?

 $1 = a 0 at the end of the line
e. Describe the string matched by the Ruby regular expression /(\.)/ ?

 $1 = a single (literal) period
f. What is the output of the following Ruby program?

 “CMSC 330” =~ /([0-9]+)/
 puts $1 // 330
 puts $2 // nil

g. What is the output of the following Ruby program?
 a = [4,5,6]
 a[5] = 7
 a.delete_at(1)
 puts a // 4 6 nil nil 7
 a.push(2)
 a.push(1)
 puts a.pop // 1

h. What is the output of the following Ruby program?
 if “CMSC 330” =~ /1/ then
 puts “t”
 elsif “CMSC 330” !~ /1/ then
 puts “f” // f
 else
 puts “n”
 end

i. What is the output of the following Ruby program?
 a = [“c”, “b”, “a”]
 puts a // c b a
 b = a
 a.sort!
 puts b // a b c

j. What is the output of the following Ruby program?
 a = “CMSC 330 CMSC 351”
 b = a.scan(/[A-Z]+/)
 puts b // CMSC CMSC
 a.scan(/[0-9]+ [A-Z]+/) { |x| puts x } // 330 CMSC

k. What is the output of the following Ruby program?
 a = {4 => 6, 5 => 7}
 puts a[4] // 6
 puts a[6] // nil

 puts a.values // 6 7 or 7 6
l. What is the output of the following Ruby program?

h = Hash.new(0)
h["a"] = h["b"]
h["b"] = 7
h["c"] += 2
puts "#{h["a"]} #{h["b"]} #{h["c"]" // 0 7 2

m. What is returned by “file = File.new(filename, "r"); lines = file.readlines();”?
Array of strings where each string is a line from the file <filename>

n. What is returned by “x = ARGV[0];”?
String for 1st command line parameter

o. Write a Ruby function foo that takes a code block and executes it twice.
def foo() 2.times{ yield } end
foo() { puts “Running” } // prints “Running Running”

4. Ruby programming

a. Write a Ruby program that reads in lines of input from $stdin and remembers
all integers (consecutive digits) encountered. Each line of input may contain 0
or more integers or non-integers. The program should stop and print out the
list of integers in sorted order (from smallest to largest) when the word
“Done!” is encountered.

a = Array.new
loop do
 line = $stdin.readline
 break if line =~ /Done\!/
 line.scan(/\d+/) { |x| a.push x.to_i }
end
a.sort!
a.each { |x| puts x }

b. Write a Ruby program that reads the name of a text file from the command
line, opens the file, reads every line of text in the file, and prints only the lines
that contain exclusively the following characters: uppercase and lowercase
letters, digits, and underscore. For example, lines that contain space or
punctuation should not be printed.

// Version that reads entire file into array
file = File.new(ARGV[0], "r")
lines = file.readlines
lines.each{ |line|
 line.chomp!
 if line !~ /[^A-Za-z0-9_]+/ then
 puts line
 end
}

// Alternate version that reads file one line at a time
file = File.new(ARGV[0], "r")
until file.eof? do
 line = file.readline
 line.chomp!
 if line !~ /[^A-Za-z0-9_]+/ then
 puts line
 end
end

