CMSC 330, Practice Problems 2 (SOLUTIONS)

1. Regular expressions and languages

a.

b.

From the perspective of formal language theory, what is a language?
Set of strings

Given the language A = {“aa”, ’c”} and B = {“b”’}, what is the language AB?
{“aab”, “Cb”}

Given the language A = {“aa”, ’c”
{e}

Given the language A = {“aa”, ”c”}, what is the language A%

“aaaa”’ “CC”, “aac”’ “caa”

Given the language A = {“aa”, ”c”}, what is the language A*?
{ g, “aa”, “C”, “aaaa”, “CC”, “aac”, “caa”, “aaaaaa’’ ... }

Give a regular expression for all binary numbers including the substring “101”.
(0I1)*101(0I1)*

Give a regular expression for all binary numbers with an even number of 1’s.
(0%10*1)*0* or 0*(10*10*)*

Give a regular expression for all binary numbers that don’t include “000”.
©01100111)*01001¢)

}, what is the language A%

2. Finite automata

a.

b.

When does a NFA accept a string?

If there any path for the string that ends at a final state for the NFA
How long could it take to reduce a NFA with n states and t transitions to a
DFA?

2[1
Give a NFA that only accepts binary numbers including the substring “101”.

d. Give a NFA that only accepts binary numbers that include either “00” or “11”.

e. Give a NFA that only accepts binary numbers that include both “00” and “11”.

(010)*(0le)
g. Compute the e-closure of the start state for each of the NFA above.
For NFA in (¢) e-closure(1) = {1,2}
For NFA in (d) e-closure(1) = {1,2,5}
For NFA in (e) e-closure(1) = {1,2,8}
For NFA in (f) e—closure(A) = {AF}

h. Give a DFA that only accepts binary numbers with an odd number of 1’s.

i. Give a DFA that only accepts binary numbers that include “000”.

j. Give a DFA that only accepts binary numbers that don’t include “000”.

k. What language (or set of strings) is accepted by the following DFA?

“

(12

o

1

OO,

0.1 0

Described as a list of strings:
{ “01”, “111”, “0011”, “01111”, “10”’ “000”’ “0110”’ “1111”’ “00111”’
“o11111”...}
where all underlined strings may have any number of (s appended

Described as a regular expression: 011 (11 001011)(111(01111)0%)

Explanation (for each underlined portion of RE)

e (011(11001011)(111(01111)0%*) from state 1 to S and accepts
e 0111 001011)(111(01111)0*) from state 1 to 2, then...

e 01111 001011)(111(01111)0*) from state 2 to 7 and accepts
e 01111 001011)(111(01111)0%*) from state 2 to 3, then...

e 01LI(IO00I0ID)(AT11(01111)0%) accepts w/ 0 or more 0’s

1. For each regular expression: 1*, (0101)*0
a) Reduce the RE to an NFA using the algorithm described in class.
b) Reduce the resulting NFA to a DFA using the subset algorithm.
¢) Show whether the DFA accepts / rejects the strings “17, “117, “101”
d) Minimize the resulting DFA using Hopcroft reduction
e) Are any 2 of the minimized DFA identical?

I* — NFA — DFA

&
0300
&
Accept / reject
o 17 {3,1,4} — {2,4,3,1} accept

e “117 {3,1,4} — {2,4,3,1} — {2,4,3,1} accept
e “101” ({3,14} — {2,4,3,1} — reject

Minimized DFA
Initial partitions: accept ={ {3,1,4}, {2,4,3,1} } =PI,
nonfinal = @
= move({3,1,4}, 1) > Pl
= move({2,4,3,1}, 1) > P1
No need to split P1, minimization done. After cleanup, minimal DFA is

(

(0I01)*0 — NFA

Accept / reject
o “1” {9,7,1,3,10,11} — reject
o “117 {9,7,1,3,10,11} — reject
e “101” {9,7,1,3,10,11} — reject

Minimized DFA
Initial partitions: accept ={ {2,4...}} =PI,
nonfinal ={ {9,7...}, {6,8...}} =P2
= move({9,7...}, 0) > Pl
= move({6,8...}, 0) —» P1
* move({9,7...}, 1) — reject

move({6,8...}, 1) — reject
No need to split P2, minimization done. After cleanup, minimal DFA
(different from previous minimal DFA) is

