
CMSC330 Fall 2011 Quiz #3 Solutions

1. (8 pts) OCaml Types and Type Inference

a. (3 pts) Give the type of the following OCaml expression
fun x -> [x 1] Type = (int->’a) -> (‘a list)

b. (3 pts) Write an OCaml expression with the following type
‘a list -> ‘a Code = fun (x::y) -> x
 fun x -> match x with h::t -> h

c. (2 pts) Give the value of the following OCaml expressions. If an error exists,

describe the error.
 (fun x -> fun y -> x+y) 6 4 Value = 10

2. (16 pts) OCaml Programming

a. (8 pts) Write a curried function findKth which when given a number k and a list
lst of int (key, value) pairs, returns the kth value in the list. You may use map or
fold if you wish, but it is not required. You may assume lst contains at least k
pairs. Example:

 findKth 1 [(1,2);(5,9);(9,3)] = 2 // since 2 is 1st value
 findKth 2 [(1,2);(5,9);(9,3)] = 9 // since 9 is 2nd value

let rec findKth k lst = match lst with
 (x,y)::t -> if k = 1 then y else (findKth (k-1) t)

b. (8 pts) Using either map or fold and an anonymous function, write a curried
function findGreaterThan which when given a number n and a list of ints lst,
returns a list of all elements of lst greater than n (maintaining their relative
ordering). You may assume (x > y) returns true when x is larger than y. Example:

 findGreaterThan 20 [33;18;21;19] = [33;21]
 findGreaterThan 65 [33;18;21;19] = []

let findGreaterThan v lst = List.rev
 (fold (fun a h -> if (h > v) then (h::a) else a) [] lst)

3. (6 pts) Context Free Grammars
 Consider the following grammar: S � E+E | E*E
 E � 0 | 1 | n | (S)

a. (2 pts) What is the set of strings accepted by this grammar?
 Arithmetic expressions involving + and *.

b. (4 pts) Provide a leftmost derivation of the string “(n+1)*n” for this grammar.

 S � E*E � (S)*E � (E+E)*E � (n+E)*E � (n+1)*E � (n+1)*n

