Program Assignment 2

CMSC 417 Spring 2017

February 14, 2017

1 Deadline

March 2, 2017 11:00PM .

2 Objective

In this assignment you will write the server program which will communicate using sockets with
the client program provided by us. Your server program will operate according to the protocol
described in the next chapter. Obviously, the protocol is trivial/useless, however, this exercise will
get familiarize you with client/server programming and communication protocol.

3 Protocol

The server runs on the machine SERVER HOSTNAME and listens for requests on a TCP socket
bound to port SERVER PORT. Both constants are defined in the header file, “common.h”, provided
for you.

Client Server

CLENTEYE

SERVERBYE

Figure 1: Protocol

The protocol has four types of messages: HELLO, STATUS, CLIENT_BYE and SERVER _BYE.
Each message is an ASCII string, and consists of multiple fields separated by whitespace (space
(0x20) or newline (0x0a) character). The MAXIMUM length of the string is 255.

The protocol outline is given in Fig 1. The client initiates the protocol by sending a HELLO
message to the server. The server replies with a STATUS message. The client then sends a
CLIENT _BYE message, and the server terminates the connection by sending a SERVER_BYE
message. A connection is successful if and only if all of these messages are correctly sent and
received. Since we are using TCP for communication in this assignment, you do not have to worry
about lost messages; you only need to ensure that all messages are sent correctly (and that you
receive and parse messages correctly).

The details of each message are as follows:

1. HELLO (From the client to the server: Client — Server)
The HELLO message has 4 fields EXACTLY in the following order:

e Magic String
It MUST set to be MAGIC STRING which is a constant defined in the header file
(”cmsc417spring2017”). If the client sends a message which does not start with this
magic string, the message should be ignored by your server program.

e Message Type
The type string is HELLO to indicate a message type HELLO. The server should be
case-sensitive.

e Login ID
This field is a “pretend” login ID. You will put this login ID as a argument when you
execute the client program. Please use the format, cs417xxx where xxx represents a
three digit number of your choosing

e Name
The last field is your first name. Please do NOT put spaces in your name, even if it
contains spaces. You will also put your name as a argument when you execute the client
program.

An example HELLO message might look like this:
cmsc417spring2017 HELLO ¢s417000 Alice

2. STATUS (Server — Client)
The STATUS message has 4 fields in the following order:

e Magic String
Same as above.

e Message Type
Must be set to STATUS.

e Cookie
An integer randomly generated by the server (represented in ASCII). Cookie generation
is explained later.

e [P Address and Port number
A string of the form a.b.c.d:e, representing the IP address and port number of the client.

An example STATUS message might be:
cmsc417spring2017 STATUS 42 128.8.128.153:48522

. CLIENT_BYE (Client — Server)

The CLIENT_BYE message has 3 fields in the following order:

e Magic String
The same as above.

e Message Type
Must be set to CLIENT_BYE.

e Cookie
A string of an integer, set to the value of the cookie sent by the server in the STATUS
message for this connection.

An example CLIENT _BYE message would be:
cmsc417spring2017 CLIENT _BYE 42

. SERVER BYE (Server — Client)

The SERVER_BYE message has 2 fields in the following order:

e Magic String
The same as above.

e Message Type
Must be set to ”SERVER_BYE”.

An example SERVER_BYE message would be:
cmsc417spring2017 SERVER_BYE

4 Server Program

The command line syntax for a minimal server is given below. The server will take the port as an
argument.

USAGE:
./server [<port>]

e The cookie should be generated using the formula:

(a+b+c+d) 13mod 1111, where a.b.c.d is the IP address of the client, 0 < a, b, ¢, d <
255.

e After successful communication, the server MUST print the cookie it generates along with
the clients login id, first name, IP address and port number. All this information should be
in a single line. An example is:

555 ¢s417050 Alice from 128.8.126.208:48542

Notice that ((128+8+126+208) 13 mod 1111) is 555.

e Your server should not accept spurious input from the clients.

— We will test your server with non-conforming clients; the server should print out an error
message containing the clients IP address and port number also in a single line, as such:
Error from 128.8.126.133:48522
and immediately close the connection when it finds a bad message from the client. It
should not breakdown, but continue operating after servicing misbehaving clients. Bad
messages are ones that have an incorrect magic string, incorrect message type or too
many fields.

Remember, the cookie sent in the STATUS message has to match the cookie in the
CLIENT BYE message for a communication to be successful.

e The server should be able to serve multiple clients. It is acceptable if this is done serially.

e Do NOT print out any other debugging messages. They are useful for you, but not for your
TA to grade.

e All output should be printed to stdout. You may use fllush(stdout); after every output to
stdout.

e You should have your server bind to all available interfaces

5 Client Program

The client program is provided. The command line syntax for the client is given below. The
client program takes command line arguments corresponding to the login id and first name. The
hostname and port specifications are optional. If included, they override the default definition of
SERVER HOSTNAME and SERVER PORT in “common.h”.

USAGE:
./client [<hostname> [<port>]] <login id> <first name>
./client heaving.csic.umd.edu 9999 csic417050 Alice

6 Requirement

e Your code must be -Wall clean on gee. (For example, when you compile your code, try like
this: “gce -o -Wall server server.c”)

e The TA will answer general questions/confusions only, and is not supposed to debug for you.
The “This is my code, what could be the problem” type of questions will be ignored.

7 Submission

e Please submit your code to the Submit Server (https://submit.cs.umd.edu/).

e You should upload a zip file which contains the files server.c and common.h (and possibly
any other .h files you are using). You can create this file on linux using:
zip server.zip server.c common.h

e Your code must run in NRL’s CORE

