Problem 1. (25 points, 3-8 points each) Short answer questions. Explanations are not required, but may be given for partial credit.

(a) Give two examples that might arise in a game implemented in Unity, one where you want a rigid-body to have a collider and one where you want a trigger.

(b) You have three points p, q, and r in the plane. You want to compute a point that lies close to the center of this triangle (I don’t care exactly where). Explain how to compute such a point using the operations of affine geometry.

(c) Consider the four points $a = (1,3)$, $b = (3,3)$, $c = (3,1)$ and $d = (1,1)$ in the figure below. List these points in Morton order (and briefly how you got your answer).

(d) In Unity, you want to rotate an object through 270° degrees to occur smoothly over a period of 3 seconds. In your Update function, how many degrees of rotation should you apply? (Hint: Use the value of Time.deltaTime.)

(e) From the perspective of performance (time and/or space) list one advantage and one disadvantage of using a hashmap rather than an 3-dimensional array to represent a grid decomposition of 3-dimensional space.

Problem 2. (25 points) The objective of this problem is to derive a test for a cylindrical collider. The collider is defined by four parameters (see Figure 1(a)):

- the center point $p = (p_x, p_y, p_z)$ of the collider
- a unit-length vector $\vec{u} = (u_x, u_y, u_z)$ that points along the central axis of the cylinder
- a positive real r that indicates the radius of the cylinder (perpendicular to the central axis)
- a positive real ℓ that indicates the length of the cylinder along its central axis
Figure 1: Cylinder Collider.

Our objective is to derive a procedure that will determine whether a given point \(q = (q_x, q_y, q_z) \) lies within the collider (see Figure 1(b)).

(a) (5 points) Given the points \(p \) and \(q \), show (using mathematical notation) how to compute the coordinates of a vector \(\vec{v} = (v_x, v_y, v_z) \) that is directed from \(p \) to \(q \) (see the figure (b)).

(b) (10 points) Given your answer to (a), show (using mathematical notation) how to decompose \(\vec{v} \) as the sum of two vectors \(\vec{v}' \) and \(\vec{v}'' \) such that \(\vec{v}' \) is parallel to \(\vec{u} \) and \(\vec{v}'' \) is perpendicular to \(\vec{u} \) (see Figure 1(c)). (Hint: Use the dot product.)

(c) (10 points) Given your answer to (b), show (using mathematical notation) how to compute the lengths of the vectors \(\vec{v}' \) and \(\vec{v}'' \) and then use these lengths together with \(r \) and \(\ell \) to determine whether \(q \) lies within the cylinder collider.

Problem 3. (30 points, 5–10 points each) Your company’s latest game involves a water cannon, which is used to extinguish fires in burning buildings. We will consider the problem in 2-dimensional space. The cannon’s bind pose is shown in Fig. 2(a). It consists of three rotatable joints: the base, the elbow, and the barrel. Water comes out from the nozzle point \(p \).

- Joint a (base joint) is at the origin
- Joint b (elbow joint) is 20 units above the origin
- Joint c (barrel joint) is 12 units to the right of the elbow joint
- Point p (nozzle) is 5 units to the right of the barrel joint
Given the three joint angles θ_a, θ_b, and θ_c, we want to determine the location of nozzle point p' (see Fig. 2(b)).

(a) What are the coordinates of the nozzle point p in the bind pose relative to each of the following coordinate systems? Express each answer as a 3-element homogeneous vector:

(i) Barrel frame: $p_c = \ldots$
(ii) Elbow frame: $p_b = \ldots$
(iii) Base frame: $p_a = \ldots$

(b) Express the following local-pose transformations as homogeneous 3×3 matrices. (In all cases assume the bind pose shown in Fig. 2(a).)

(i) $T_{b\leftarrow c}$ (barrel-frame coordinates to the elbow-frame coordinates)
(ii) $T_{a\leftarrow b}$ (elbow-frame coordinates to the base-frame coordinates)

(c) What is the transformation $T_{a\leftarrow c}$ (barrel-frame coordinates to base-frame coordinates)? You may give your answer as a single 3×3 matrix or the product of matrices.

(d) Express the following inverse local-pose transformations as homogeneous 3×3 matrices (again, assuming the bind pose shown in Fig. 2(a).)

(i) $T_{c\leftarrow b}$ (elbow-frame coordinates to the barrel-frame coordinates)
(ii) $T_{b\leftarrow a}$ (base-frame coordinates to the elbow-frame coordinates)

(e) Suppose that we apply a rotation by angle θ_a about the base joint, θ_b about the elbow joint, and θ_c about the barrel joint. Let $\text{Rot}(\theta)$ denote a 3×3 homogeneous rotation matrix, that is

$$\text{Rot}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Present a formula (as the product of matrices) that maps p in the bind pose to its position p' as a result of the rotations. Assume that p and p' are both represented relative to the base frame. That is, present a matrix M (as the product of matrices) such that $p'_a = M p_a$. (Hint: It will be faster for you and easier for me if you express your matrices by name, e.g. “$T_{b\leftarrow c}$” rather than as a 3×3 matrix.)

Do only one of problems 4 or 5.

Problem 4. (20 points) Extending the water-cannon problem, we want to develop a targeting tool that determines where the water will hit a vertical wall. Suppose that the nozzle point of the water cannon is located h units above the ground, and the water is being shot with velocity given by the vector $\vec{v}_0 = (v_{0,x}, v_{0,y})$. The wall is located ℓ units in front of the cannon (see Fig. 3).
Suppose we turn on the water at time $t = 0$. After consulting a standard textbook on Physics, we are reminded that gravity results in an acceleration of $g \approx 9.8 \text{m/s}^2$, and after t time units have elapsed, the position of a projectile shot at velocity \vec{v}_0 is given by $p(t) = (x(t), y(t))$, where

$$x(t) = v_{0,x}t \quad \text{and} \quad y(t) = h + v_{0,y}t - \frac{1}{2}gt^2.$$

As a function of h, ℓ, g, and \vec{v}_0, explain how to compute the height y^* at which the water hits the wall. You may assume that the velocity is high enough that the water will reach the wall. (Hint: Start by computing the time it takes to reach the wall.)

Problem 5. (20 points) Suppose that we wanted to perform a rotation of $\theta = 60^\circ$ degrees about a unit vector $\vec{u} = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$ using a quaternion representation (see Fig. 4).

(a) As a function of \vec{u} and θ, express this rotation as a unit quaternion q. (You may express q as a 4-element vector or in the form (s, \vec{u}), where s is a scalar and \vec{u} is a 3-element vector.) Recall that

$$\sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2} \quad \text{and} \quad \cos 60^\circ = \sin 30^\circ = \frac{1}{2}.$$

(These are the only trig values you might need.)

(b) What is the product of the following two quaternions? $q_1 = (1, 2, 0, 0) = 1 + 2i$ and $q_2 = (0, 3, 4, 0) = 3i + 4j$. Recall the rules of quaternion multiplication:

$$i^2 = j^2 = k^2 = ijk = -1 \quad \text{and} \quad ij = k, \; jk = i, \; ki = j.$$