Name:

(Practice) Midterm 1

CMSC 430

Introduction to Compilers
Spring 2015

Instructions

This exam contains 9 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question | Score Max
1 25
2 30

3 35

Total 90

Question 1. Short Answer (25 points).

a. (5 points) Briefly explain the difference between a small step semantics and big step semantics.

b. (5 points) What’s the difference between an ahead-of-time compiler and a just-in-time compiler? Explain
in at most 1-2 sentences.

c. (5 points) In at most a few sentences, explain what it means for a compiler to be correct?

d. (5 points) Why do compilers sometimes need to introduce temporary variables when translating to an
intermediate representation?

e. (5 points) Give three-address code equivalent to the following Imp program:

-‘33

2;
64;
1

while (m > 0) {
si=r
t:=0
while (s > 0) {
t =t +n;

Question 2. Miscellaneous (40 points).

a. (10 points)
Below is a small step operation semantics for boolean expressions that “short-circuits” evaluation—it
does not reduce sub-expression that are unneeded:

bv = true | false
b = b |bAb|bVD|-b
———— ORTRUE ———— ORFALSE ————— ANDTRUE
true Vb — true false Vb — b true Ab—b
b1 — bll by — bll
—————————— ANDFALSE ; ANDSTEP 5 ORSTEP
false/\b—>false bl/\b2—>b1 /\bg b1\/b2—>b1\/b2
b—t
—————————— NEGTRUE ———————— NEGFALSE ——— NEGSTEP
—true — false —false — true =b — —b

Define a grammar of contexts, C, such that the following rule can replace some of the above rules. List
the names of rules it replaces.

b—b
Cb] — C[V]

CONTEXT

b. (10 points) Here is a grammar, give a deriviation showing that abbed is in the language A:

S — aBd
B — bB
B — ¢

B — ¢

c. (10 points) Here is a program in IR for computing the double factorial of 5 (5!!):

0: d :=2

1: n :=5

2: if (d=0) goto 11
3. f :=1

4: if (n=0) goto 8
5: f :=n x £

6: n:=n-1

7: goto 4
8:d:=d4d -1

9: n := £

10: goto 2

11: r := £

Draw the control flow graph for this program.

Question 3. Operational semantics (35 points). Consider lambda calculus extended with integers
and updatable references. (Here ¢ (“location”) is a pointer, and a store S maps locations to values.)

v = n|Arel|l
e == wvlx|ee|refelle|er =€y
S = 0SS/l v
Here is most of an operational semantics for this language:
AprPL AprPR
BETA (S,e1) — (5, €}) (S, e2) — (57, ¢e5)
(S, (Azx.e1)ve) — (S, e1[z — va]) (S,e1 e2) — (57, €] e2) (S,v e2) — (S, v eh)
REF REFIN
0 & dom(S) S = S[l +— v] (S,e) — (9, ¢)
(S, ref v) — (S, 0) (S,ref e) — (S’ ref €)
ASSIGN ASSIGNL AssiGNR
S = S[l v (S,e1) — (5, €}) (S, e2) — (5, ¢e5)

(S,0:=v) — (S v) (S,e1 :=v) = (5§ €} :=) (S,e1:=e3) = (5, e1 :=¢€))

a. (5 points) In this semantics, is the left-hand side of an assignment evaluated first; is the right-hand side
evaluated first; or is the choice non-deterministic? Explain your answer briefly.

b. (10 points) Let () be the empty store. Show a derivation that in this operational semantics, the reduction
at the bottom holds. (You can draw your derivation up, above the reduction.)

0, (Az.x) (vef 42)) (Az.2)) — ([— 42], (Az.z) £) (Az.2))

c. (10 points) Evaluate the following configuration until no more reductions are possible. For this part,
just show the reduction steps and not the derivations of the steps. Use ¢1, {2, {3, etc if you need more
locations. (Note this example will use a pointer to a pointer, which is allowed.)

0, (Ax.z)(ref 42)) := ((\y.Az.y) (vef 43) 44)) —

d. (10 points) Write the missing operational semantics rule(s) for dereference (written le).

