25.2 The Floyd-Warshall algorithm 629

25.2 The Floyd-Warshall algorithm

In this section, we shall use a different dynamic-programming formulation to solve
the all-pairs shortest-paths problem on a directed graph G = (V, E). The re-
sulting algorithm, known as the Floyd-Warshall algorithm, runs in ©(V?3) time.
As before, negative-weight edges may be present, but we assume that there are
no negative-weight cycles. As in Section 25.1, we shall follow the dynamic-
programming process to develop the algorithm. After studying the resulting al-
gorithm, we shall present a similar method for finding the transitive closure of a
directed graph.

The structure of a shortest path

In the Floyd-Warshall algorithm, we use a different characterization of the struc-
ture of a shortest path than we used in the matrix-multiplication-based all-pairs
algorithms. The algorithm considers the “intermediate” vertices of a shortest path,
where an intermediate vertex of a simple path p = (v, v, ..., v;) is any vertex
of p other than vy or vy, that is, any vertex in the set {v,, v3, ..., v;1}.

The Floyd-Warshall algorithm is based on the following observation. Under our
assumption that the vertices of G are V = {1, 2, ..., n}, let us consider a subset
{1,2,..., k} of vertices for some k. For any pair of vertices i, j € V, consider all
paths from i to j whose intermediate vertices are all drawn from {1,2,...,k}, and
let p be a minimum-weight path from among them. (Path p is simple.) The Floyd-
Warshall algorithm exploits a relationship between path p and shortest paths from i
to j with all intermediate vertices in the set {1,2,...,k — 1}. The relationship
depends on whether or not k is an intermediate vertex of path p.

+ If k£ is not an intermediate vertex of path p, then all intermediate vertices of
path p are in the set {1,2,...,k —1}. Thus, a shortest path from vertex i
to vertex j with all intermediate vertices in the set {1,2,...,k — 1} is also a
shortest path from i to j with all intermediate vertices in the set {1,2,...,k}

* If k'is an intermediate vertex of path p, then we break p down into i X5 k &3 J
as shown in Figure 25.3. By Lemma 24.1, p; is a shortest path from i to k

with all intermediate vertices in the set {1,2, ..., k}. Because vertex k is not
an intermediate vertex of path p;, we see that p; is a shortest path from i to k
with all intermediate vertices in the set {1,2,...,k — 1}. Similarly, p, is a

shortest path from vertex £ to vertex j with all intermediate vertices in the set
{1,2,...,k—1}.

630

Chapter 25 All-Pairs Shortest Paths

all intermediate vertices in {1,2, ...,k — 1} all intermediate vertices in {1,2,...,k—1}

f_’/\
P1 @ D2
@
®
\//_ﬁ___/

p: all intermediate vertices in {1,2, ..., k}

Figure 25.3 Path p is a shortest path from vertex i to vertex J» and k is the highest-numbered
intermediate vertex of p. Path py, the portion of path p from vertex { to vertex k, has all intermediate
vertices in the set {1, 2, ..., k¥ — 1}. The same holds for path py from vertex k to vertex j.

A recursive solution to the all-pairs shortest-paths problem

Basedvon the above observations, we define a recursive formulation of shortest-path
estimates that is different from the one in Section 25.1. Let dl.(jk) be the weight of a
shortest path from vertex i to vertex j for which all intermediate vertices are in the
set{1,2,...,k}. Whenk =0, a path from vertex i to vertex j with no intermediate
vertex numbered higher than 0 has no intermediate vertices at all. Such a path has
at most one edge, and hence dl-(;)) = wj;;. A recursive definition following the above

discussion is given by 4 {
W wi iftk=0,)
=1 _ _ _) 25.
i {mln (@50,a% " +a% Dy ifk>1. (25:5)
Because for any path, all intermediate vertices are in the set {1,2, ..., n}, the ma-

trix D™ = (dl-(;’)) gives the final answer: df;l) =53, j)foralli, j e V.

Computing the shortest-path weights bottom up

Based on recurrence (25.5), the following bottom-up procedure can be used to
compute the values di(f) in order of increasing values of k. Its input is an 7 x n
matrix W defined as in equation (25.1). The procedure returns the matrix D® of
shortest-path weights.

FLOYD-WARSHALL (W)

1 n < rows[W]

2 DO w

fork < 1ton

4 dofori < 1ton
5 dofor j < 1ton
6
7

W

(k) . k—=1) (k=1 (k=1)
. do dl.j < min (dij diy +dkj)
return DV

25.2 The Floyd-Warshall algorithm 631

0 3 8 o —4 NIL 1 1 N 1
o) 0 o 1 7 NIL NIL NIL 2 2
DO=] o 4 0 o oo OO =] N 3 NL NL NL
2 o =5 0 o 4 NIL 4 NIL NIL
© o0 o 6 0 NIL NIL NIL 5 NIL
0 3 8§ o0 —4 NIL 1 1 NI 1
oo 0 o 1 7 NIL NIL NIL 2 2
DUW=]00c 4 0 0o oo n®=|~Nxr 3 ~o NL NL
2 5 =5 0 =2 4 1 4 NIL 1
00 0 o0 6 0 NIL NIL NIL 5 NIL
0 3 8 4 —4 NIL 1 1 2 1
o0 0 oo 1 7 NIL NIL NIL 2 2
DP=]oo 4 05 11| m@=|~Nxw 3 wNo 2 2
2 5 =5 0 =2 4 1 4 NIL 1
oo o0 oo 6 0 NIL NIL NIL 5 NIL
0 3 8 4 —4 NIL 1 1 2 1
[ole) 0 oo 1 7 NIL NIL NIL 2 2
D=1 4 0 5 11 n¥=|~xr 3 Nz 2 2
2 -1 -5 0 - 4 3 4 NIL 1
0 00 X ‘)’6 0 NIL "NIL NIL 5 NIL
0 3 —-1 4 —4 NIL 1 4 2 1
3 0 -4 1 -1 4 NIL 4 2 1
pH=|7 4 05 3 nv=1 4 3 o 2 1
2 -1 -5 0 =2 4 3 4 NIL 1
8 5 1 6 0 4 3 4 5 NIL
0 1 -3 2 -4 NIL 3 4 5 1
3 0 -4 1 -1 4 NIL 4) 2 1
DO =17 4 0 5 3 n® = 4 3 ~Nxo 2 1
2 -1 -5 0 =2 4 3 4 NIL 1
8 5 1 6 0 4 3 4 5 NIL

Figure 25.4 The sequence of matrices D) and n® computed by the Floyd-Wérshall algorithm
for the graph in Figure 25.1.

Figure 25.4 shows the matrices D® computed by the Floyd-Warshall algorithm
for the graph in Figure 25.1.

The running time of the Floyd-Warshall algorithm is determined by the triply
nested for loops of lines 3-6. Because each execution of line 6 takes O(1) time,
the algorithm runs in time ®(n3). As in the final algorithm in Section 25.1, the

632

Chapter 25 All-Pairs Shortest Paths

code is tight, with no elaborate data structures, and so the constant hidden in the
©-notation is small. Thus, the Floyd-Warshall algorithm is quite practical for even
moderate-sized input graphs.

Constructing a shortest path

There are a variety of different methods for constructing shortest paths in the Floyd-
Warshall algorithm. One way is to compute the matrix D of shortest-path weights
and then construct the predecessor matrix I1 from the D matrix. T his method
can be implemented to run in O (%) time (Exercise 25. 1-6). Given the predecessor
matrix IT, the PRINT-ALL-PAIRS-SHORTEST-PATH procedure can be used to print
the vertices on a given shortest path. ‘

We can compute the predecessor matrix IT “on-line” just as the Floyd-Warshall
algorithm computes the matrices D®, Specifically, we compute a sequence of
matrices [T, TIW, | 1™, where IT = 1™ and nl-(jk) is defined to be the prede-
cessor of vertex j on a shortest path from vertex i with all intermediate vertices in
the set {1, 2, ..., k}. ’ :

We can give a recursive formulation of ni(jk). When k = 0, a shortest path from i
to j has no intermediate vertices at all. Thus,

7O _ {NIL ifi = jor w;; = 00, (25.6)

=i i ifi # jand w; < o0
For k > 1, if we take the path i ~» k ~» J, where k # j, then the predecessor
of j we choose is the same as the predecessor of j we chose on a shortest path

from k with all intermediate vertices in the set {1,2,...,k — 1}. Otherwise, we

choose the same predecessor of ; that we chose on a shortest path from i with all

intermediate vertices in the set {1L,2,...,k—1}. Formally, for k£ > 1,

I L L L (25.7)
i ma U if di ™V > a4 dy V. '

We leave the incorporation of the IT® matrix computations into the FLOYD-
WARSHALL procedure as Exercise 25.2-3. Figure 25.4 shows the sequence of
1™ matrices that the resulting algorithm computes for the graph of Figure 25.1.
The exercise also asks for the more difficult task of proving that the predecessor
subgraph G ; is a shortest-paths tree with root ;. Yet another way to reconstruct
shortest paths is given as Exercise 25.2-7.

Transitive closure of a directed graph

Given a directed graph G = (V, E) with vertex set V = {1,2,..., n}, we may
wish to find out whether there is a path in G from i to J for all vertex pairs i, j € V.
The transitive closure of G is defined as the graph G* = (V, E*), where

252 The Floyd-Warshall algorithm 633

E* ={(i, j) : there is a path from vertex / to vertex j in G} .

One way to compute the transitive closure of a graph in ® (n?) time is to assign
a weight of 1 to each edge of £ and run the Floyd—Warshall\al'g_o'rithm. If there is a
path from vertex i to vertex j, we get d;; < n. Otherwise, we get d;; = oc.

There is another, similar way to compute the transitive closure of G in @ (n?)
time that can save time and space in practice. This method involves substitution
of the logical operations Vv (logical OR) and A (logical AND) for the arithmetic
operations min and + in the Floyd-Warshall algorithm. Fori, j,k =1,2,...,n,
we define tl.(;{) to be 1 if there exists a path in graph G from vertex i to vertex j with
all intermediate vertices in the set {1,2,...,k}, and O otherwise. We construct
the transitive closure G* = (V, E*) by putting edge (i, j) into £* if and only if

tl.(f) — 1. A recursive definition of /* analogous to recurrence (25.5), is

ij
Lo _ 0 ifis# jand (i,) EE,
7|1 fi=jorG, j)EE,

and fork > 1,

(9] (k—1) (k—1) (k—1)
e A (PN S I (25.8)
As in the Floyd-Warshall algorithm, we compute the matrices T® = (tl.(f)) in

order of increasing k.
[

TRANSITIVE-CLOSURE (G)

1 n <« |VIG]]

2 fori < 1ton

3 dofor j < 1ton

4 doifi = jor(i,j) € E[G]
5 thenzl@ «~1

6 else tléo) «~0

7 fork< 1ton

8 dofori < 1ton

9 do for j < 1ton

(k) (k—=1) (k—1) (k—1)
10 [A (SN
11 return 7™

Figure 25.5 shows the matrices T* computed by the TRANSITIVE-CLOSURE pro-
cedure on a sample graph. The TRANSITIVE-CLOSURE procedure, like the Floyd-
Warshall algorithm, runs in ®(n%) time. On some computers, though, logical op-
erations on single-bit values execute faster than arithmetic operations on integer
words of data. Moreover, because the direct transitive-closure algorithm uses only
boolean values rather than integer values, its space requirement is less than the

634 Chapter 25 All-Pairs Shortest Paths

100 0 100 0 100 0
o_|0 1 11 m_[0 1 11 o_|o 1 11
T‘0110T‘0110T‘0111

1011 1011 1011

100 0 100 0
@_|o 1 11 @w_|1 1 11
=101 11 =100

1111 1111

Figure 25.5 A directed graph and the matrices T %) computed by the transitive-closure algorithm,

Floyd-Warshall algorithm’s by a factor corresponding to the size of a word of com-
puter storage.

Exercises

25.2-1 ‘ ,
Run the Floyd-Warshall algorithm on the weighted, directed graph of Figure 25.2.

Show the matrix D® that results for each iteration of the outer loop.

25.2-2
Show how to compute the transitive closure using the technique of Section 25.1.

25.2-3

Modify the FLOYD-WARSHALL procedure to include computation of the [T® ma-
trices according to equations (25.6) and (25.7). Prove rigorously that for all i e vV,
the predecessor subgraph Gr,; 1s a shortest-paths tree with root ;. (Hint: To show
that G ; is acyclic, first show that rri(/k) =/ implies di(f) > dl-(,k) + wy;, according to
the definition of niﬁ-k) . Then, adapt the proof of Lemma 24. 16.)

25.2-4
As it appears above, the Floyd-Warshall algorithm requires @ (1?) space, since we ‘
compute dl-(f) fori, j,k =1,2,...,n. Show that the following procedure, which

simply drops all the superscripts, is correct, and thus only ©(n?) space is required.

]

626

Chapter 25 All-Pairs Shortest Paths

0 3 8 oo -4 0 3 8 2 -4
© 0 oo 1 7 3 0 41 7
LD=]lo0 4 0 o oo LD = | o 0 5 11
2 oo -5 0 o 2 -1 -5 0 =2
o0 0 0 6 0 8 o 1 6 0
0 3 -3 2 -4 0 1 -3 2 —4
30 -4 1 -1 3 0 —4 1 -1
L®=]7 4 o0 5 11 W=7 4 05 3
2 -1 -5 0 =2 2 -1 -5 0 -2
8 5 1 6 0 8 5 1 6 0

Figure 25.1 A directed graph and the sequence of matrices L ") computed by SLOW-ALL-PAIRS-
SHORTEST-PATHS. The reader may verify that LO =L@ . wis equal to L™ and thus L™ =
L® forallm > 4.

LY = W,

L® = W = W-W,
LW = w# = W2.w?
L(S) — WS — W4'W4,

L(2ﬂg(n-1)1) Wzl'lg(nflﬂ szlg(nflﬂ—l W2I'lg(nA1)T*1

Since 2M"8"~D1 > 5 — 1, the final product L2V is equal to L®.
The following procedure computes the above sequence of matrices by using this
technique of repeated squaring.

