
CMSC 733, Computer Processing of Pictorial
Information

Homework 0: Alohomora!
Due on: 11:59:59PM on Wednesday, Jan 29 2016

Prof. Yiannis Aloimonos,
Nitin J. Sanket

January 27, 2017

First of all, welcome to CMSC 733. The course website is up and running and can
be found here: https://www.cs.umd.edu/class/spring2017/cmsc733/. The course an-
nouncements will be made through Piazza and the link can be found here: https://www.

piazza.com/umd/spring2017/cmsc733/home. We sent out Piazza invitations to everyone
enrolled in the course. In case you did not get it please add yourself.

For those who are not familiar with Harry Potter, Alohomora is the spell used to open
doors. This homework is aimed at giving you an opportunity to judge the amount of workload
of this course. This homework is designed as a combination of CMSC426’s first homework
and first project. We would recommend dropping this course if you are not able
to complete this homework within the deadline. This homework will make sure that
you come equiped with the right skillset, both in terms of theory and coding expertise to
plough through this course comfortably.

This homework is broken into 2 parts, the first part (section) teaches you basic color seg-
mentation and simple image handling functionality in Matlab. The second part (section)
teaches you about boundary detection.

1 Pin It!

You are given an image of colored objects a white background (Check file named TestImgResized.jpg).
Your task is to segment out the objects, count the number of colored objects and also count
the objects of the same color, i.e., green, blue, yellow and red. To have some fun, we also
threw in a white object and a transparent object (we really want you to try to get these as
well to make your fundamentals stronger).

1

https://www.cs.umd.edu/class/spring2017/cmsc733/
https://www.piazza.com/umd/spring2017/cmsc733/home
https://www.piazza.com/umd/spring2017/cmsc733/home


1.1 Functions you are allowed to use for this part

Any built-in Matlab function except the colorThresholder App (http://www.mathworks.
com/help/images/ref/colorthresholder-app.html). If you have a doubt whether a func-
tion can be used or not e-mail Nitin at nitinsan@terpmail.umd.edu.

1.2 Various Steps Involved

1.2.1 Denoise Images - 10Pts

You can use any denoising filter like a gaussian or a median filter to ‘smooth out’ the image
to reduce noise.

1.2.2 Find total number of colored objects (excluding white and transparent
pin) - 70Pts

You can use a combination of morphological operations and blob based properties (region-
props) to do this.

1.2.3 Find individual colored objects - Red, Green, Blue and Yellow - 20pts

Count and find individually red, green, blue and yellow objects. Use color information in
any color space you want in conjunction with the previous step output to do this.

1.2.4 EXTRA CREDIT: Detect the white and transparent colored pins - 20pts

Do anything you want to find this. (If possible, avoid hard-coding the thresholds).

1.2.5 EXTRA CREDIT: Implement a simple 1D Gaussian to detect colored
pins - 20pts

Follow points from the gaussian tutorial. You’ll need a 1D gaussian for each color.

1.2.6 EXTRA CREDIT: Implement a 3D Gaussian to detect colored pins -
20pts

Follow points from the gaussian tutorial. You’ll need a 3D gaussian for each color.

1.2.7 EXTRA CREDIT: Implement a Gaussian Mixture model to detect any
one of the colored pin - 100pts

Follow points from the gaussian tutorial. You’ll need multiple 1D/3D gaussians for each
color.

2

http://www.mathworks.com/help/ images/ref/colorthresholder-app.html
http://www.mathworks.com/help/ images/ref/colorthresholder-app.html


2 Shake my Boundary!

Boundary detection is an important, well-studied computer vision problem. Clearly it would
be nice to have algorithms which know where one object stops and another starts. But
boundary detection from a single image is fundamentally difficult. Determining boundaries
could require object-specific reasoning, arguably making the task “vision hard”.

Classical edge detection algorithms, including the Canny and Sobel baselines we will com-
pare against, look for intensity discontinuities. The more recent pb (probability of boundary)
boundary detectors significantly outperform these classical methods by considering texture
and color gradients in addition to intensity. Qualitatively, much of this performance jump
comes from the ability of the pb algorithm to suppress false positives that the classical meth-
ods produce in textured regions.

In this homework, you will develop a simplified version of pb, which finds boundaries by
examining brightness, color, and texture information across multiple scales. The output of
your algorithm will be a per-pixel probability of boundary. Several papers from Berkeley
describe their algorithms and how their methods evolved over time. Their source code is also
available for reference (don’t use it). Here we investigate a simplified version of the recent
work from Ref. [1]. Our simplified boundary detector will still significantly outperform the
well regarded Canny edge detector. Evaluation is carried out against human annotations
(ground truth) from a subset of the Berkeley Segmentation Data Set 500 (BSDS500).

2.1 Overview

The main steps in Ref. [1] are:

• Low-level feature extraction: (1) brightness, (2) color, and (3) textons

• Multiscale cue combination with non-maximum suppression

• Spectral clustering

3



The focus of pb-lite will be on the representation of brightness, color and texture gradi-
ents (bullet point 1). This is covered (briefly) in Section 3.1 of Ref. [1]. We will trivialize
the multi-scale cue combination. We will get a simple form of non-maximum suppression
by combining our pb-lite estimates with a classical edge detector. We will skip spectral
clustering. You will implement the following pipeline:

The major steps are to pre-define:

• a filter bank of multiple scales and orientations.

• half-disc masks of multiple scales and orientations.

And then for every image:

• create a texton map by filtering and clustering the responses with kmeans.

• compute per pixel texture gradient (tg) and brightness gradient (bg) by comparing
local half-disc distributions.

• output a per-pixel boundary score based on the magnitude of these gradients combined
with a baseline edge detector (Canny or Sobel).

Finally the output for all of the evaluate using the the Berkeley Segmentation Data Set
500 (BSDS500) (code will be given soon).

2.2 Texture Representation

The key distinguishing element between pb-lite and classical edge detection is the ability
to measure texture gradients in addition to intensity gradients. The texture gradient at any
pixel should summarize how quickly the texture is changing at that point. The key technical
challenges are how to represent local texture distributions and how to measure distances

4



Figure 1: Oriented First Derivative Gaussian Filter Bank

between them. As in pb, we will represent texture as a local distribution of textons, where
textons are discrete texture elements generated by clustering filter bank responses. Texture
and brightness gradients will be measured by comparing the distributions of textons or
brightnesses within half-discs centered on a pixel of interest.

2.2.1 Filter Bank - 25Pts

Filtering is at the heart of building the low level features we are interested in. We will use
filtering both to measure texture properties and to aggregate regional texture and brightness
distributions. A simple but effective filter bank is a collection of oriented derivative of Gaus-
sian filters. These filters can be created by convolving a simple Sobel filter and a Gaussian
kernel and then rotating the result. Suppose we want o orientations(from 0 to 360◦) and s
scales, we should end up with a total of s × o filters. A sample filter bank of size 2×16 is
shown in Fig. 1.

2.2.2 Half-disc Masks - 25Pts

The half-disc masks are simply (pairs of) binary images of half-discs. This is very impor-
tant because it will allow us to compute the chi-square distances using a filtering operation,
which is much faster than looping over each pixel neighborhood and aggregating counts for
histograms. Once you get the above filter bank right, forming the masks will be trivial. A
sample set of masks (8 orientations, 3 scales) is shown in Fig. 2.

The filter banks and masks only need to be defined once and then they will be used on
all images. You have some discretion to experiment with different filter banks and masks.

Hint: some useful Matlab functions include: imrotate, conv2, imfilter, cell, reshape.

2.2.3 Generating a Texton Map

Filtering an input image with each element of your filter bank results in a vector of filter
responses centered on each pixel. For instance, if your filter bank has 16 orientations and 2
scales, you would have 32 filter responses at each pixel. A distribution of these 32-dimensional
filter responses could be thought of as encoding texture properties. We will simplify this
representation by replacing each 32-dimensional vector with a discrete texton id. We will do

5



Figure 2: Half disk masks

this by clustering the filter responses at all pixels in the image in to K textons using kmeans
(use Matlab’s kmeans function). Each pixel is then represented by a one dimensional,
discrete cluster id instead of a vector of high-dimensional, real-valued filter responses (this
process of dimensionality reduction from 32 to 1 is called “Vector Quantization”). This can
be represented with a single channel image with values in the range of [1, 2, 3, ... , K]. K =
64 seems to work well but feel free to experiment. To visualize the a texton map, you can
try imagesc(tmap); colormap(jet);

2.2.4 Local Texton Distributions

We will represent local texture distributions by building K-dimensional texton histograms
over regions of interest. These histograms count how often each texton is observed. The
regions of interest we will use are the half-disc masks previously discussed.

Analogous local histograms could be built for brightness or color, after brightness and
color have been quantized in to some number of clusters.

2.2.5 Computing Texture Gradient (tg) and Brightness Gradient (bg) - 10Pts
(5Pts each)

The local texton gradient (tg) and brightness gradient (bg) encode how much the texture
and brightness distributions are changing at a pixel. We compute tg and bg by comparing
the distributions in left/right half-disc pairs centered at a pixel. If the distributions are
the similar, the gradient should be small. If the distributions are dissimilar, the gradient

6



should be large. Because our half-discs span multiple scales and orientations, we will end up
with a series of local gradient measurements encoding how quickly the texture or brightness
distributions are changing at different scales and angles.

We will compare texton and brightness distributions with the chi-square measure. The
chi-square distance is a frequently used metric for comparing two histograms. It is defined
as follows:

chi sqr(g,h) = .5 * sum[ i=1:K ((g i - h i)2 / (g i + h i)) ], where g and h
are histograms with the same binning scheme, and K indices through these bins. Note that
the numerator of this expression is simply the sum of squared difference between histogram
elements. The denominator adds a “soft” normalization to each bin so that less frequent
elements still contribute to the overall distance.

To efficiently compute tg and bg, filtering can used to avoid nested loops over pixels. In
addition, the linear nature of the formula above can be exploited. At a single orientation
and scale, we can use a particular pair of masks to aggregate the counts in a histogram via a
filtering operation, and compute the chi-square distance (gradient) in one loop over the bins
according to the following outline:

chi sqr dist=img*0

for i=1:num bins

tmp = 1 where img is in bin i and 0 elsewhere

g i = convolve tmp with left mask

h i = convolve tmp with right mask

update chi sqr dist

end

The above procedure should generate a 2D matrix of gradient values. Simply repeat this
for all orientations and scales, you should end up with a 3D matrix of size n×m× (o× s),
where n , m are dimensions of the image.

Hint: you might want less than 256 bins when computing bg.

2.2.6 Rich Filter Banks - LM, S and MR - 30Pts (10Pts each)

Instead of using filter bank of Oriented First Derivative Gaussian filters, we can use richer
(more complex and hopefully better) filter banks like Leung-Malik, Schmid and Maximum
Response for rich feature descriptors. For detailed explanation refer to http://www.robots.

ox.ac.uk/~vgg/research/texclass/filters.html.

7

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html


Note that, the equations are not given to you for this part and hence we want you guys to
figure it out on your own. However, feel free to discuss with upto 2 other students and/or
come to office hours for some tips.
It’s interesting to see how each filter bank affects the response on tg. One can use all the
filter banks at once to generate a single tg or you can try to generate 3 different tgs, one
for each of the filter banks, i.e., tg1 for LM, tg2 for S and tg3 for MR (you will be running
K-means three times here). See which performs better. You can also come up with your own
way of combining the filter banks. The end goal is to get your precision-recall curve above
the canny response curve.

2.2.7 Color Gradient - 10Pts

You need to use color information in L*a*b color space to use Color Gradient in addition to
Texture Gradient and Brightness Gradient as used in Ref. You can bin the values of L and
then compute chi square distance to get brightness gradient bg. Similarly we use a∗ and b∗

channels to compute color gradients cg(a∗) and cg(b∗). Now you can combine these two to
get one unified color gradient cg(ab∗) = cg(a∗) + cg(b∗) check Ref. [1]

2.2.8 Sobel and Canny baseline

You need to run canny pb and sobel pb functions to generate canny and sobel baseline
edges which we further use for pb edges

2.2.9 Output pb-lite

The final step is to combine information from the features with a baseline method (based on
Sobel or Canny edge detection) using a simple equation

PbEdges = (tg + bg + cg).*(w1*cannyPb + w2*sobelPb)

A simple choice for w1 and w2 would be 0.5. However, one could make these wights
dynamic (as you would do it in the extra credit).

The magnitude of the features represents the strength of boundaries, hence, a simple mean
of the feature vector at location i should be somewhat proportional to pb. Of course, fancier
ways to combine the features can be explored for better performance and extra credit. As a
starting point, you can simply use an element-wise product of the baseline output and the
mean feature strength to form the final pb value, this should work reasonably well.

2.2.10 Evaluating Boundary Detection

The goal of this project is to have a boundary detector that beats the baseline method
provided, which is based on Sobel/Canny edge detection. The evaluation is based human
annotation (groundtruth), collected as part of the BSDS500 dataset. A detailed description
of the evaluation scheme is presented in Ref. [1]. A good performance measure is the F score
of the precision-recall curve. The stencil code does automatic evaluation for you. A sample
precision-recall curve is shown in Fig. 3.

8



Figure 3: Precession Recall curve from Ref. [1]

(dotted lines are copied from figure 17 in Ref. [1], solid lines come from actual
implementations in Matlab)

The above diagram is generated using all of the 200 test images in the dataset. If you are
using a subset of the testset, you might get better/worse performance because some images
are “easier” or “harder”. But if you do better than gpb (dotted red line), something is either
wrong or you can publish a top paper.

2.3 Extra Credit

2.3.1 Dynamic weights - 20Pts

In this boundary detection algorithm we fuse ‘Pb-lite output’ with Canny or Sobel baseline
edges. Instead of weighing them equally i.e.,

PbEdges = (tg + bg).*(cannyPb + sobelPb)

You have to come up with different weights for Canny and Edge depending upon image.

2.3.2 Color Segmentation - 40Pts

Come with some approach to use Color prior to detect Object boundaries which can help
further boost the quality of boundary detection.

9



2.3.3 Do Something Cool! - upto 20Pts

Add any other heuristic which will help improve the over all boundary detection.

2.4 Starter Code

The full pipeline has been given in the Starter.m and you need to fill in the code in each
section. Use the images from ../TestImages folder to test your algorithm. At the end of
each section save the images as mentioned in the comments.

• Texton Maps are saved to ../Images/TextonMap/TextonMap ImageName.png (ImageName
is the file name of the image)

• Texture Gradients to ../Images/tg/tg ImageName.png

• Brightness Maps to ../Images/BrightnessMap/BrightnessMap ImageName.png

• Brightness Gradients to ../Images/bg/bg ImageName.png

• Sobel Pb outputs to ../Images/SobelPb/SobelPb ImageName.png

• Canny Pb outputs to ../Images/CannyPb/CannyPb ImageName.png

• Pb Lite outputs to ../Images/PbLite/PbLite ImageName.png

• Plot PR curves and save it as ../PR Curve.png (code and the accompanying Readme
are in the Benchmark folder).

You can refer to some sample reports (which might help you understand the pipeline
better) at http://cs.brown.edu/courses/cs143/2011/results/proj2/.

2.5 Submission Guidelines

Submit your codes (.m files) with the naming convention
YourDirectoryName hw0.zip onto ELMS/Canvas (Please compress it to .zip and no
other format). Your DirectoryName is the username to your UMD e-mail ID. If your email
ID is nitinsan@terpmail.umd.edu, your DirectoryName is nitinsan. Your zip file should
have the following things:

• Folder named Code with all your code. Please make subfolders Part1 and Part2 for
code from both parts.

• Folder named Images with sub-directories mentioned in the Starter Code section. (The
folders are already given to you, do not change them).

• Typeset a report in LATEXusing the IEEETran format given to you in Draft folder.
The output file should be (pdf and pdf ONLY). Describe the pipeline with a lot of
images, intermediate outputs (include filter visualization), your implementation details
and any observations in detail with appropriate references for both sections.

10

http://cs.brown.edu/courses/cs143/2011/results/proj2/


• A Readme.txt file on how to run your code for both parts.

If your code does not comply with the above guidelines, you’ll be given ZERO credit.

3 Allowed Matlab functions

imfilter, conv2, imrotate, im2double, rgb2gray, rgb2lab, rgb2ycbcr, rgb2hsv, kmeans

and all other plotting and matrix operation/manipulation functions are allowed.
fspecial, imgaussfilt are NOT ALLOWED!

4 Collaboration Policy

You are restricted to discuss the ideas with at most two other people. But the code you turn-
in should be your own and if you DO USE (try not it and it is not permitted) other external
codes/codes from other students - do cite them. For other honor code refer to the CMSC733
Spring 2017 website here https://www.cs.umd.edu/class/spring2017/cmsc733/.

Acknowledgements

This fun project was inspired from ‘Introduction to Computer Vision’ (CS 143) course of
Brown University (http://cs.brown.edu/courses/cs143/2011/proj2/).

DON’T FORGET TO HAVE FUN AND PLAY AROUND WITH IMAGES!.

References

[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection
and hierarchical image segmentation. IEEE transactions on pattern analysis and machine
intelligence, 33(5):898–916, 2011.

11

https://www.cs.umd.edu/class/spring2017/cmsc733/
http://cs.brown.edu/courses/cs143/2011/proj2/

	Pin It!
	Functions you are allowed to use for this part
	Various Steps Involved
	Denoise Images - 10Pts
	Find total number of colored objects (excluding white and transparent pin) - 70Pts
	Find individual colored objects - Red, Green, Blue and Yellow - 20pts
	EXTRA CREDIT: Detect the white and transparent colored pins - 20pts
	EXTRA CREDIT: Implement a simple 1D Gaussian to detect colored pins - 20pts
	EXTRA CREDIT: Implement a 3D Gaussian to detect colored pins - 20pts
	EXTRA CREDIT: Implement a Gaussian Mixture model to detect any one of the colored pin - 100pts


	Shake my Boundary!
	Overview
	Texture Representation
	Filter Bank - 25Pts
	Half-disc Masks - 25Pts
	Generating a Texton Map
	Local Texton Distributions
	Computing Texture Gradient (tg) and Brightness Gradient (bg) - 10Pts (5Pts each)
	Rich Filter Banks - LM, S and MR - 30Pts (10Pts each)
	Color Gradient - 10Pts
	Sobel and Canny baseline
	Output pb-lite
	Evaluating Boundary Detection

	Extra Credit
	Dynamic weights - 20Pts
	Color Segmentation - 40Pts
	Do Something Cool! - upto 20Pts

	Starter Code
	Submission Guidelines

	Allowed Matlab functions
	Collaboration Policy

