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Event-Based Visual Flow

Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara Bartolozzi

Abstract—This paper introduces a new methodology to com-
pute dense visual flow using the precise timings of spikes from
an asynchronous event-based retina. Biological retinas, and their
artificial counterparts, are totally asynchronous and data-driven
and rely on a paradigm of light acquisition radically different
from most of the currently used frame-grabber technologies.
This paper introduces a framework to estimate visual flow from
the local properties of events’ spatiotemporal space. We will
show that precise visual flow orientation and amplitude can
be estimated using a local differential approach on the surface
defined by coactive events. Experimental results are presented;
they show the method adequacy with high data sparseness and
temporal resolution of event-based acquisition that allows the
computation of motion flow with microsecond accuracy and at
very low computational cost.

Index Terms—Event-based vision, event-based visual motion
flow, neuromorphic sensors, real time.

I. INTRODUCTION

ECENT work in this paper of neural activity has shown

that each spike arrival time is reliable [1]-[4]. However,
the extent to which the precise timing of neural spikes down
to millisecond precision is significant for computation is still a
matter of debate. In this paper, we address this issue by focus-
ing on the computational principles that could be operated
by motion-sensitive neurons of the visual system to compute
the visual flow. We bring together new experimental sensors
delivering truly naturalistic precise timed visual outputs and a
new mathematical method that allows to compute event-based
visual motion flow using each incoming spike’s timing as main
computation feature. This presented method does not rely on
gray levels, nor on the integration of activity over long time
intervals. It uses each relative timing of changes of individual
pixel’s responses to visual stimuli as a computational input.
This paper builds on recent achievements of neuromorphic
engineering, exploiting the unique characteristics of a novel
family of asynchronous image sensors [5]-[8]. The increasing
availability and, most importantly, the steadily improving
quality of these sensors open up the potential to introduce a
shift in the methodology of acquiring and processing visual
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information in various demanding, machine vision applica-
tions [9]-[15]. The microsecond temporal resolution and the
inherent redundancy suppression of the frame-free, event-
driven acquisition and subsequent representation of visual
information employed by these cameras enables to derive a
novel methodology to process the visual information at a very
high speed and with low computational cost.

Visual flow is a topic of several research fields that has
been intensively studied since the early days of computational
neuroscience. It is widely used in artificial vision and essential
in navigation. Visual flow is known to be an ill-posed noisy
visual measure limited by the aperture problem. Its use in real-
time applications on natural scenes is generally difficult. It is
usually computed sparsely on high salient points.

Visual flow techniques are commonly classified under one of
the four major categories.

1) Energy-based or frequency-based methods estimate opti-
cal flow from the output of the velocity-tuned filters
designed in the Fourier domain [16]-[18].

2) Phase-based methods estimate image velocity in terms
of band-pass filter outputs [19].

3) Correlation-based or region-matching methods search
for a best match of small spatial neighborhoods between
adjacent frames [20]-[25].

4) Gradient-based or differential methods use spatiotem-
poral image intensity derivatives and an assumption of
brightness constancy [26]-[28].

Energy-based techniques are slow [19] and are not adequate
for real-time applications where gradient-based approaches
perform better, as they rely on correlations. Visual flow
is generally slow and does not exceed several Hertz on
dense input. There are existing solutions to speed up the
computation according to a tradeoff between accuracy and
efficiency [29]. Preprocessing stages and kernel differenti-
ation are often needed but they affect drastically real-time
performance. In this case, accuracy is linked to the size
of kernels that inevitably influences the execution time. If
temporal kernels are used, then the buffering of images needed
to perform computation dramatically increases the amount
of stored data and introduces additional time delay in the
computation.

The high computational cost of all of the approaches
described previously are not suitable for real-time applications.
Frame-based flow computation using large temporal windows
is not compatible with the temporal precision of biological
sensors that respond with 1 ms precision. The same obser-
vation applies to artificial vision that intrinsically remains
linked to the frequency of the available cameras, generally
not exceeding 60 Hz. Most of the developed techniques are
computationally expensive and are mostly used OFF-line.
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Comparing to the event-based optical flow calculation intro-
duced in [10], the method introduced in this paper offers a new
formulation which is entirely and only based on events’ timing.
The optical flow in [10] is obtained by adapting the differential
flow brightness consistency constraint to event-based. Image
intensities are then approximated by events’ summations, as
the dynamic vision sensor (DVS) does not provide absolute
intensities. This paper introduces an alternative to flow com-
putation that does not necessitate solving dynamic equations.
It offers a pure event-based time-oriented computation of the
motion flow within the focal plane.

II. NEUROMORPHIC SILICON RETINA

Biological retinas, unlike frame-based cameras, transmit
less-redundant information about a visual scene in an asyn-
chronous manner. The various functionalities of the retina have
been incorporated into neuromorphic vision sensors because
the late 1980s in the pioneering paper of Mahowald [30].
Since then, the most interesting achievements in neuromorphic
retinas have been the development of activity-driven sensing.
The event-based vision sensors output compressed digital
data in the form of events, removing redundancy, reducing
latency, and increasing dynamic range as compared with
conventional imagers. A complete review of the history and
existing sensors can be found in [31]. The DVS used in
this paper is an Address-Event Representation (AER) silicon
retina with 128 x 128 pixels [5]. The DVS output consists
of asynchronous address-events that signal scene reflectance
changes at the times they occur. Each pixel is independent
and detects changes in log intensity larger than a threshold
since the last emitted event (typically 15% contrast). As shown
in Fig. 1, when the change in log intensity exceeds a set
threshold, an ON or OFF event is generated by the pixel
depending on whether the log intensity increased or decreased.
The advantages of such a sensor, over conventional clocked
cameras, are that only moving objects produce data thus
reducing the load of postprocessing. Additionally, the timing
of events can be conveyed with very low latency and accurate
temporal resolution of 1 us. Thus the equivalent frame rate is
typically several kiloHertz.

The encoding of log intensity of light change implements
a form of local gain adaptation which allows them to work
over scene illuminations that range from 2 lux to >100 klux.
When events are transmitted off-chip, they are time-stamped
and then transmitted to a computer using a standard universal
serial port (USB) connection, in this case packets of events
are received approximately every millisecond.

III. EVENT-BASED VISUAL MOTION FLOW
A. Flow Definition

The stream of events from the silicon retina can be mathe-
matically defined as follows: let e(p, 1) = (p, t)T a triplet giv-
ing the position p = (x, y)” and the time ¢ of an event. We can
then define locally the function X, that maps to each p (Fig. 2),
the time ¢
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Fig. 1. (a) First generation DVS sensor with 128 x 128 pixels [5].
(b) Principle of ON and OFF spikes generation of DVS pixels, adapted from
Lichtsteiner et al. [5]. Top: the evolution of pixel’s voltage V), proportional
to the log intensity. Bottom: the corresponding generation of ON (voltage
increases above change threshold) and OFF (voltage decreases) events, from
which the evolution of V), can be reconstructed.

Fig. 2. General principle of visual flow computation. The surface of active
events X, is derived to provide an estimation of orientation and amplitude of

&

Fig. 3. Experimental setup consisting of a black bar printed on a white disk,
driven by a dc motor.

Time is an increasing physical quantity, X, as defined here, is
a monotonically increasing function of space.

We then set the first partial derivatives with respect to the
parameters as: X, = 0%./0x and X, = 0X./0y. We can
then write X, as

T.(p+ Ap) = Z.(p) + VEI Ap +o(|API) (2

with VX, = (62./0x,0%./0y)T.
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Fig. 4. (a) Ground truth and computed orientation for the stimulus in Fig. 3.
Red line: the real orientation of the bar. Green line: the estimated one for
the event-based method. (b) Angles estimated using frame-based Horn and
Schunck [27]. Red line: real angles. Green line: estimated angles.
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Fig. 5. Sample of computed event-based flow for the stimulus in Fig. 3
shown for a cumulated period of 5 ms for a portion of the focal plane for
better readability.

The partial functions of X, are functions of a single variable
whether x or y. For time being a strictly increasing function,
Y, is a nonzero derivatives surface at any point. It is then
possible to use the inverse function theorem to write around
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Fig. 7.  (a) Frame-based optical flow using Horn—-Schunck on a 3 ms

accumulation frame. (b) Accumulation of event-based optical flow over a
same duration of 3 ms.

a location p = (x, y)T

oz, ATy, 1
e (x,y0) = 5 (x) = o)
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(x0,y) = = ©)
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Zelxgs Zely, being X, restricted respectively to y = yo and
x = x9. The gradient VX, can then be written as

11\’

VIZe=|{—»—]) - 4)

Ux Uy
The vector V X, measures the rate and the direction of change
of time with respect to the space, and its components are
also the inverse of the components of the velocity vector
estimated at p.

B. Flow Regularization

The flow definition given by 4 is sensitive to noise because
it consists of estimating the partial derivatives of X, at each
individual event. One way of making the flow estimation
robust against noise is to add a regularization process to
the estimation. To achieve this, we assume a local velocity
constancy. This hypothesis is satisfied in practice for small
sets of spatiotemporaly clustered events. It is then equivalent
to assume X, being locally planar because its partial spa-
tial derivatives are the inverse of the speed, hence constant
velocities produce constant spatial rate of change in X,.
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Fig. 8. (a) Belt driven by a dc motor, controlled in closed loop. (b) Estimated
amplitude (green diamond) is shown with the real one (red line).

Finally, the slope of the fitted plane with respect to time axis is
directly proportional to the motion velocity. The regularization
also compensates for absent events in the neighborhood of
active events where motion is being computed. The plane
fitting provides an approximation of the timing of nonactive
spatial locations because of the nonidealities and the asynchro-
nous nature of the sensor.

A robust plane fitting is applied to each event arriving
at time ¢ over a spatiotemporal window of dimensions L x
L x 2At, centered on the event. In practice, a spatiotemporal
window is selected empirically for the fitting, in what follows
L =3 and At ~ 1 ms.

Any event e(p,t) belongs to a plane of parameters I1 =
(abe d)T if the following equality is satisfied:

p
(5)

According to this equality, the regularization operation can be
performed as detailed in Algorithm 1 that provides the whole
approach of computing motion flow.

The threshold in step 4 can be set to th; = le-5, it is
usually the magnitude of accuracy we get from this iterative
estimation algorithm. The second threshold in step 5 is also
set to thy = 0.05, according to the experimental results.
Moreover, the error usually converges in just 1-2 iterations.
The resulting algorithm is robust and consumes less compu-
tational resources.

Algorithm 1 Local planes fitting algorithm on incoming
events.
1: for all event e(p, t) do
2:  Define a spatiotemporal neighborhood €., centered on e
of spatial dimensions L x L and duration [t — At, t+ At].
3: Initialization:

« apply a least square minimization to estimate the plane
O=(abc d)T fitting all events &;(p;, t;) € Qe:
2
Pi

o’ {4 (6)

I1o = argmin
MeR* i

e set € to some arbitrarly high value (~ 10e6).

4:  while € > th; do
L (P
5: Reject the ¢; € Q, if |Hg ti
1
is too far from the plane) and apply Eq. 6 to estimate
I1 with the non rejected ¢; in Q..
6: Set € = ||IT — TIo||, then set ITo = II.
7:  end while
8: Attribute to e the velocity defined by the fitted plane.
9: end for
10: return vy (e), vy(e).

| > thy (i.e. the event

IV. RESULTS AND VALIDATION

The input used for the validation of the proposed method is
provided by a DVS camera connected to a PC via a USB
port. The motion flow algorithm has been implemented in
Java using jAER [32] and in C using a linux driver of the
DVS. The results obtained with the event-based method are
compared with frame-based algorithms such as Horn and
Shunck [27], and Lucas and Kanade [33]. For Horn and
Schunck, following [19], the smoothness term /1 is set to
0.5, with a number of iteration <100. The event-based flow
computation is performed according to Algorithm 1. The flow
is regularized as detailed in Section III-B, but X, is never
updated by the regularization operation. In the experiments,
events are also clustered according to their polarities. The ON
and the OFF events are then processed separately and the final
results shown are merging both the pathways.

A. Orientation

In the first experiment, the motion flow is computed for a
black bar painted on a white disk, rotating with a constant
angular velocity @ = 1.59 rad - s~! as shown in Fig. 3. The
event-based optical flow is computed in real time directly
using the output train of events. The frame-based optical flow
is computed for a 30 fps using a conventional frame-based
camera where images are rescaled to 128 x 128 pixels to allow
for comparison with the DVS.

Fig. 4 shows the orientation of the bar computed from
the flow plotted versus the ground truth orientation of the
bar for the event-based and Horn and Schunck algorithms.
The mean error corresponding to the event-based algorithm is
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Fig. 9. (a) Number of events per time bins generated by the rotating bar shown in Fig. 3. (b) Processing time ratio of the event-based technique: the mean

processing ratio is equal to 0.1, for a mean number of events equal to 60. (c) Number of features using cumulated frames generated by the optimized Lucas—
Kanade’s algorithm. The algorithm selects the features on which the optical flow is computed. (d) Processing time ratio of the Lucas—Kanade’s technique: the

mean processing ratio is equal to 0.0395 and the mean number of features is

0.037 rad, with a standard deviation of 0.025 rad. The mean
error corresponding to the Horn and Schunck [27] frame-based
implementation is 0.11282 rad, with a standard deviation of
0.07816 rad. This is three times higher than the event-based
method. The event-based computation takes full advantage
of the high temporal accuracy of the sensor, by providing a
smoother and more accurate estimation of the rotation angles
in real time. A sample of the computed flow is shown in
Fig. 5, highlighting the quality of the estimated motion, the
motion flow is shown for a period of 5 ms. The lower accuracy
of the flow estimated by the Horn and Shunk algorithm on
reconstructed images is largely because of the lower temporal
resolution of frames. Increasing the frame-rate would of course
improve the frame-based performance, but at the cost of an
increase of the needed computational resources and, as shown
later, at the cost of real-time performances.

B. Amplitude

The cumulative amplitude of the visual motion flow for the
previous experiment is shown in Fig. 6. Each spatial location
is associated with its estimated flow amplitude after a single
rotation. As the computed component of the flow are inverted,
high amplitudes correspond to slow motions, and vice versa.
As expected, the velocity in pixel of the rotating bar increases
with radius. The expected theoretical ratio of the velocity
between the outer and the inner rim is 3.09, the estimated
ratio after computation is 3.07.

6.

A sample of flows computed from the same sequence on
the same time period of 3 ms for frame-based and event-
based methods is shown in Fig. 7. Frames have been generated
by cumulating events to simulate a frame rate of 3 ms to
ensure clarity in the display of results and allow comparison
on a short timescale. In the absence of a fast camera, and
because of the simplicity of the stimulus, cumulating events
has shown to efficiently approximate the frames [10]. In Fig. 7,
frame-based computation produces a wide variety of ampli-
tude responses because of the static nature of frame-based
acquisition. It is usually a nonsmooth vector field because of
the nondiscontinuities introduced by frames’ sampling. The
method used to improve the smoothness of the vector field as
appearing in [27] applies a general smoothing paradigm that
induces additional artifacts. Computed event-based amplitudes
in Fig. 7 are smooth and closely correspond to the expected
amplitudes because of the use of the high temporal resolution
of the DVS.

In second experiment, the amplitudes of the estimated
motion flow are computed for a moving pattern of bars
presented on a moving conveyor belt, whose translational
speed can be accurately set by adjusting the supply voltage
of a dc motor [Fig. 8(a)].

The amplitudes of the visual flow are computed for different
known belt speeds obtained by setting the dc motor with a
range of velocities 0.081 m-s~! to 0.365 m-s~!. To compare
the real and the computed amplitudes, we normalize the
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Fig. 10. (a—d) Outdoor scene acquired by the event-based retina showing cars on a highway using cumulated events on the focal plane. (e-h) Mean motion

flow of each vehicle (arrows) increases as the cars get closer to the retina. This is a direct effect of the perspective projection. The mean velocities amplitudes

are shown in (i) for each of the three cars.

estimated amplitudes and the velocities of the moving patterns
with their respective maximum values. The normalized results,
shown in Fig. 8(b), correspond to the estimated velocity of
the motion flow, and the ground truth ranges in the interval
[0.081,0.365] m - s—!. The ground truth and the estimated
values coincide with a mean error of 9%.

C. Computational Time

We define At as the time interval within which the visual
signal is observed, and it is equal to the inverse of the frame-
rate of the standard perspective camera (i.e., At ~ 33 ms if
the camera captures at 30 fps). For a meaningful comparison,
this time duration is chosen to evaluate the frame-based and
the event-based techniques. Let Az, be the processing time
consumed for the flow estimation from the signal acquired
during Af,. We then define the ratio r such as: r = At./Afy.
If r <1 then the computation can be performed in real time.
For the experiments, the computation of the frame-based
optical-flow uses the OPEN-CV implementation Lucas and

Kanade’s [33] algorithm. It relies on a preprocessing of
incoming images to select features [34] on which the motion
visual motion flow is then estimated. Fig. 9(a) and Fig. 9(c)
shows the number of events and features used to compute the
flow for the rotating bar. As shown in Fig. 9(c), the maximum
ratio in the case of event-based algorithm is r = 0.1, showing
that the visual flow is estimated in real time. The frame-based
implementation processing time ratio is r = 0.0395 as shown
in Fig. 9(d). It also allows real-time estimation, assuming only
a few image features are detected.

The mean number of events and the mean processing
ratio allow to estimate the mean processing time of a single
event: 33 x 0.1/60 ~ 0.055 ms (mean number of events per
millisecond = 60 and mean processing ratio r = 0.1). With
the same consideration, the mean time to process one image
feature with the frame-based optimized implementation is
equal to 33 x 0.0395/6 ~0.217 ms (mean number of feature
per millisecond = 6 and mean processing ratio per feature
r = 0.035). This means that within the time slot of 33 ms,
around 600 events can be processed in real time with the first
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Fig. 11.
constant depth. The truck moving toward the retina is showing an increasing velocity amplitude because of the perspective projection. In (i) the mean velocities
amplitude of each vehicle is shown: bottom curve is reflecting the almost constant velocities of the car, while the increasing one provides the velocity of the

(a—d) Cumulative events on the focal plane of an outdoor traffic scene. In (c-h) the car moving from left to right (in the background) has an almost

truck moving toward the retina.

technique, while only 150 features can be processed in real
time in the second technique. The Lucas—Kanade C++ Open-
CV implementation is highly optimized if compared to the
Java implementation of the event-based algorithm. Presented
results can then be seen as a lower bound of the event-based
algorithm performances. Event-based motion flow is expected
to run even faster with an adequate algorithm optimization,
because its computational principle is simple.

D. Remarks

We followed in this paper the same set of experiments as in
[10] using the same recordings. Comparing both the methods,
we found that they perform similarly. The only difference lies
in the computational performances, and the presented work
lowers the amount of computational load by an order of 15%.
Perhaps the presented method is more easy to tune that the
work presented in [10] was sensitive to the summation period
of events to produce a local contrast patch. This parameters
needs to be tuned sharply according to the scene’s content.

The presented method does not necessitate such a fine tuning,
a coarse value for the plane fitting is sufficient as long as a
sufficient number of events is collected (2-5 ms for all type
of scenes). While in [10], beyond a certain summation time
interval because of the refractory period of the pixels, the
summation of events tend to produce wrong contrast patches,
thus providing imprecise orientations.

E. Natural Scenes

In the case of natural scenes, the flow estimation is harder to
evaluate as the ground truth is not available. However, it is still
possible to show the coherence of the computed flows with the
scene’s content. In the first set of data shown in Fig. 10(a—d),
the velocity vectors amplitudes of cars moving along highway
lanes using the event-based retina are shown. Velocities are
increasing as the cars are getting closer to the retina. This is a
direct effect of the perspective projection. A second sequence
acquired by the retina shown in Fig. 11 confirms the same
observations.
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Fig. 12.  Comparison of the flows computed with a 30 fps frame-based camera and the DVS. The disk is rotated at a speed ranging from 450 to 5000 rpm
with an elementary step of 500 rpm. The first column [(a), (e), (i), (m), (q)] shows the samples of images acquired by a conventional camera at 30 fps. The
second column [(b), (f), (j), (n), (r)] shows the results using the Horn and Schunck’s algorithm. As expected, frames are not suitable for these high-speed
motion as the motion blur is preventing flow estimation, motion results are chaotic and irregular and not fitting the general rotational motion of the bar. The
third column [(c), (g), (k), (0), (s)] shows the events generated by the rotating bar in the spatiotemporal space of events. One can notice that as the bar rotates
faster, more events are collected and longer portions of the motion are acquired. The last column [(d), (h), (1), (p), (t)] provides the flow estimation using the
event-based algorithm; the flows are accurately estimated in real time for all rotational speeds.

F. Limitations

The retina is subject to several nonidealities that are causing
latencies in the signal acquisition. These factors are limit-
ing the accuracy of the computed flow. In this experiment,
we consider a rotating moving bar, as shown in Fig. 12. The
bar, is observed by both the spiking retina and a conventional
camera. It has an angular speed increasing progressively from
450 to 5000 rpm.

The first column [(a), (e), (i), (m), (q)] shows the samples
of images acquired by a conventional camera at 30 fps. The
second column [(b), (), (j), (n), (r)] shows the results using the
Horn and Schunck’s algorithm. As expected, frames are not
suitable for these high speed motion as the motion blur is pre-
venting flow estimation, motion results are chaotic and irregu-
lar and not fitting the general rotational motion of the bar. The
motion flow is already inaccurate at the lowest speed as shown
in Fig. 12(b).
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(e)

Fig. 13.
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Sequences of a disk rotating with an increasing speed from 450 rpm to 5000 rpm for the event-based retina. Cumulated events in the focal planes

are shown for a fixed time period of 500 ms. Events underlining the edges are more and more scattered as the rotation speed increases; this is a typical effect

of the motion blur.
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Fig. 14.

(b)

In (a) the mean velocity of the estimated flow and in (b) the mean angle estimation are shown using the event-based retina from the event flow of

the rotating bar. The angular speed increases from 450 to 5000 rpm. Estimations are given each time the bar reaches its initial starting position. The red dots
provide the ground truth. The estimation of the motion parameters is stable up to 2500 rpm. Beyond the orientation seems to stay stable up to 400 rpm. Less
events are collected at high speed, thus affecting the slope of fitted plane but not its direction. This is the limit of the sensor for the used lighting conditions.

The third column [(c), (g), (k), (0), (s)] shows the events
generated by the rotating bar in the spatiotemporal space of
events. One can notice that as the bar rotates faster, more
events are collected and longer portions of the motion are
acquired. The last column [(d), (h), (1), (p), (t)] provides the
flow estimation using the event-based algorithm. The flows are
accurately estimated in real-time for all rotational speeds. It
is possible to notice that as the rotational speed increases the
motion flow in the event-based case tends to be sparser, Fig. 13
shows the motion blurs, resulting from the retina’s latencies

when capturing light. This is the main limiting element of the
retina in estimating accurately the flow. With the increasing
speed of the rotation, motion blurs induces clusters of events
instead of sharp edges. The retina is also not generating a
sufficient amount of events form all spatial locations, some
pixels are not activated by the moving bar. The fitting of X,
is then inevitably affected. As shown in Fig. 14, the estimated
amplitude and orientation of the bar follow closely the ground-
truth up to a rotation velocity of 2500 rpm. Beyond this
velocity, the orientation seems to stay stable up to 4000 rpm.
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Less events are collected at high speed thus affecting the slope
of fitted plane but not its direction. This is the limit of the
sensor. The use of better lighting conditions will lower these
effects.

V. CONCLUSION

This paper shows that the space of coactive events allows
to directly derive information about the direction of a visual
stimulus. The precise timing conveyed by the neuromorphic
asynchronous event-based vision sensor is fully used to deter-
mine locally for each incoming event its direction and amount
of motion. Timing is the essential computational element, the
whole computation is based on its precision. The method com-
plies with the concepts of event-based computation, processing
is performed on each incoming event instead of a time
interval. The presented work differs from existing frame-based
techniques that consider temporal window frames (33-500 ms)
and induce unnatural high computational costs. The developed
method can be applied equally on other modalities such as
tactile that shares common characteristics with vision, both
rely on a spatial grid of sensors (pressure: mechanoreceptor,
light: photoreceptor) that input to a chain of processing precise
neural responses.

The presented approach did not impose any mathematical
model, results show that the natural properties of spatiotempo-
ral spaces provide the inverse of the velocity. This observation
sets the estimation of motion on time instead of space.
The precise timing properties of the method comply with the
dynamic properties of natural environments and the impor-
tance of time measurement in the brain, Actions are driven
by time, motor control depends on processes that have to
determine when exactly to perform action. This then adds
to the ongoing debate around whether perception and move-
ment share common time lines or are organized on separate
clocks and coding. Event-based acquisition provides a fast
common mechanism that allows perception to be linked to
motion by a common computationally inexpensive timing
system. This could then provide an efficient way of controlling
sensory-dependent behavior and anticipating changes in the
environment.
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