
A Survey of Context Modelling and
Reasoning Techniques

Claudio Bettini a,∗ Oliver Brdiczka b Karen Henricksen c

Jadwiga Indulska d,c Daniela Nicklas e Anand Ranganathan f

Daniele Riboni a

aDICo, Università di Milano, Italy
bTelecooperation Group, TU Darmstadt, Germany

cNICTA, Australia
dSchool of Information Technology and Electrical Engineering,

The University of Queensland, Australia
eDepartment für Informatik, Carl von Ossietzky Universität Oldenburg, Germany

fIBM TJ Watson Research Center, Hawthorne, NY

Abstract

Development of context-aware applications is inherently complex. These applica-
tions adapt to changing context information: physical context, computational con-
text, and user context/tasks. Context information is gathered from a variety of
sources that differ in the quality of information they produce and that are of-
ten failure prone. The pervasive computing community increasingly understands
that developing context-aware applications should be supported by adequate con-
text information modelling and reasoning techniques. These techniques reduce the
complexity of context-aware applications and improve their maintainability and
evolvability. In this paper we discuss the requirements that context modelling and
reasoning techniques should meet, including the modelling of a variety of context
information types and their relationships, of situations as abstractions of context
information facts, of histories of context information, and of uncertainty of context
information. This discussion is followed by a description and comparison of current
context modelling and reasoning techniques.

Key words: context modelling, context reasoning, context management, quality of
context, situation modelling

∗ corresponding author
Email address: bettini@dico.unimi.it (Claudio Bettini).

Preprint submitted to Elsevier 27 March 2008

* Manuscript

1 Introduction

There is a growing body of research on the use of context-awareness as a tech-
nique for developing pervasive computing applications that are flexible, adapt-
able, and capable of acting autonomously on behalf of users. A large part of
this research investigates approaches to modelling context information used by
context-aware applications and reasoning techniques for context information.
The pervasive computing community increasingly understands benefits of for-
mal context information modelling. First of all, due to the inherent complexity
of context-aware applications, the development should be supported by ade-
quate software engineering methods. The overall goal is to develop evolvable
context-aware applications. Therefore the design of the general functions of
such applications should not be intertwined with the definition and evalua-
tion of context information, which is often subject to change. A good context
information modelling formalism reduces the complexity of context-aware ap-
plications and improves their maintainability and evolvability. In addition,
since gathering, evaluating and maintaining context information is expensive,
re-use and sharing of context information between context-aware applications
should be considered from the beginning. The existence of well-designed con-
text information models eases the development and deployment of future ap-
plications. Moreover, a formal representation of context data within a model
is necessary for consistency checking, as well as to ensure that sound reasoning
is performed on context data.

Several requirements have to be taken into account when modelling context
information:

Heterogeneity and mobility: Context information models have to deal with
a large variety of context information sources that differ in their update rate
and their semantic level. Sensors can observe certain states of the physical
world and provide fast and near realtime access, while providing rather raw
data (like a GPS position or a camera stream) that has to be interpreted
before being usable by applications. Information provided by the user—like
profiles or preferences—is updated more rarely and in general does not need
additional interpretation. Finally, context data obtained from databases or
digital libraries—like geographic map data—is often static. Typically, these
shared content spaces contain data at a medium level of semantics. It is in-
terpreted in some way (e.g., the geographic features are enriched with names,
tags, and relationships), but the interpretation is specific for a certain appli-
cation domain. Many context-aware applications are also mobile (i.e., running
on a mobile device) or depend on mobile context information sources (e.g.,
mobile sensors). This adds to the problem of heterogeneity as the context in-
formation provisioning must be adaptable to the changing environment. Also,
location and spatial layout of the context information play important roles

2

due to this requirement.

Relationships and dependencies: There exist various relationships be-
tween types of context information that have to be captured to ensure correct
behaviour of the applications. One such relationship is dependency whereby
context information entities/facts may depend on other context information
entities: for example, a change to the value of one property (e.g., network
bandwidth) may impact the values of other properties (e.g., remaining bat-
tery power).

Timeliness: Context-aware applications may need access to past states and
future states (prognosis). Therefore, timeliness (context histories) is another
feature of context information that needs to be captured by context models.
The management of context histories is difficult if the number of updates is
very high. It may not be feasible to store every value for future access, and
therefore summarisation techniques (e.g., the aggregation of position updates
to a movement function using interpolation techniques, or the use of historical
synopses of data) need to be applied.

Imperfection: Due to its dynamic and heterogeneous nature, context infor-
mation may be of variable quality. In fact, it may even be incorrect. Most
sensors feature an inherent inaccuracy (e.g., a few metres for GPS positions),
and the sensed values age if the physical world changes, so that this inaccu-
racy increases over time. Also, the context information may be incomplete: a
sensor that detects the number of people in a room may miss somebody. Thus,
a good context modelling approach must take these problems into account to
enable proper reasoning about context information changes to achieve appro-
priate adaptations for the application, and thus provide an experience for the
user that is consistent with the physical world.

Reasoning: Context-aware applications use context information to evaluate
whether there is a change to the user and/or to the environment situation;
taking a decision whether any adaptation to that change is necessary often
requires reasoning capabilities. Reasoning techniques can also be adopted to
derive higher level context information. Therefore, it is important that the
context modelling techniques are able to support both consistency verification,
and reasoning about complex situations.

Usability of modelling formalisms: Context information models are cre-
ated by designers of context-aware applications and are also used by the appli-
cations to manipulate context information. Therefore the important features
of modelling formalisms are the ease with which designers can translate real
world concepts to the modelling constructs and the ease with which the ap-
plications can at runtime use and manipulate context information.

Efficient context provisioning: Efficient access to context information is

3

needed which can be a difficult requirement to meet in the presence of large
models and numerous data objects. To select the relevant objects, attributes
for suitable access paths have to be represented in the context modelling. These
access paths represent dimensions along which applications often select con-
text information, typically supported by indexes. These dimensions are often
referred to as primary context, in contrast to secondary context which is ac-
cessed using the primary context. Commonly used primary context attributes
are the identity of context objects, location, object type, time, or activity of
user. Since the choice of primary context attributes is application-dependent,
given an application domain, a certain set of primary context attributes is
used to build up efficient access paths (e.g., spatial indexes if location is a
primary context).

Existing approaches to context information modelling —or context modelling
as they are often referred to—differ in the ease with which real world concepts
can be captured by software engineers, in the expressive power of the con-
text information models, in the support they can provide for reasoning about
context information, and in the computational performance of the reasoning.
Early approaches to context modelling include key-value models and markup
scheme models. Key-value models use simple key-value pairs to define the list
of attributes and their values to describe context information used by context-
aware applications. Markup based context information models use a variety
of markup languages including XML. The introduction of the W3C standard
for description of mobile devices, Composite Capabilities / Preference Pro-
file (CC/PP) [40], saw the first context modelling approaches to use RDF
and included elementary constraints and relationships between context types.
Simple kinds of reasoning over these elementary constraints and relationships
were performed with special purpose reasoners. Mark-up and RDF based con-
text information models have limitations shown in [39,65] that do not make
them very good candidates for generic context information models. Newer
approaches to context modelling use more sophisticated information systems
(database) modelling techniques or knowledge management techniques. They
also employ general purpose reasoning techniques that match their modelling
technique, e.g., first-order logic and description logic. These newer approaches
to context modelling and reasoning address many of the requirements listed
above; however none of them fulfills all the requirements for a generic context
information modelling and reasoning approach.

The goal of this paper is to show the state-of-the-art in context modelling and
reasoning in pervasive computing. We discuss the current approaches and show
the lessons learned in the process. The paper structure is as follows. Sections 2
– 4 describe the three most prominent approaches to context modelling and
reasoning. Section 5 discusses high level abstractions, often called situations,
for combining low level context information into a form more appropriate for
use by context-aware applications. Section 6 addresses the issue of context

4

information uncertainty, and shows its impact on context modelling and rea-
soning. Section 7 presents the research on hybrid context models as a lesson
learned from the application of previously presented approaches. Section 8
concludes the paper.

2 Object-role based models of context information

Fact-based context modelling approaches, including the object-role modelling
approach described in this section, originated from attempts to create suffi-
ciently formal models of context to support query processing and reasoning, as
well as to provide modelling constructs suitable for use in software engineering
tasks such as analysis and design. Early context modelling approaches, such as
attribute-value pairs, could not satisfy these requirements, particularly as the
types of context information used by applications grew more sophisticated.

This section is concerned with context modelling approaches that have their
early roots in database modelling techniques. In particular, it focuses on the
Context Modelling Language (CML), which was described in a preliminary
form by Henricksen et al. in 2002 [34] and refined in later publications [32,33].

2.1 CML overview

CML is based on Object-Role Modeling (ORM) [30], which was developed
for conceptual modelling of databases. CML provides a graphical notation
designed to support the software engineer in analysing and formally specifying
the context requirements of a context-aware application. It extends ORM with
modelling constructs for:

• capturing the different classes and sources of context facts discussed in sec-
tion 1: specifically, static, sensed, derived, and user-supplied (“profiled”)
information;

• capturing imperfect information using quality metadata and the concept of
“alternatives” for capturing conflicting assertions (such as conflicting loca-
tion reports from multiple sensors) [32];

• capturing dependencies between context fact types; and
• capturing histories for certain fact types and constraints on those histories.

The formality of ORM and the CML extensions makes it possible to support a
straightforward mapping from a CML-based context model to a runtime con-
text management system that can be populated with context facts and queried
by context-aware applications. Halpin [29] describes the Rmap procedure for

5

Person Device

engaged in

permitted to use

located near

* located at

located at

(name)

Location

a

a

[]

requires device

has mode

s Communication

Key/uniqueness constraint

Key

Snapshot uniqueness constraint

Alternative uniqueness constraint

Dependency

Quality annotation

engaged in(p1,a) dependsOn located at(p2,l)

iff p1 = p2

located near(p,d) iff located at(p, l1)

 and located at (d, l2)

 and l1 = l2

a

(identity) (id)

[]

synchronous

Mode (name)

has channel

s

Certainty

Communication

Channel (id)

Sensed fact type

Static fact type

Profiled fact type

Derived fact type

Temporal fact type

Ambiguous/alternative fact type

s

*

Probability

(nr)+

*

Activity

(name)

Fig. 1. An example CML model.

transforming a conceptual schema to a relational schema, and Henricksen [31]
has developed an extension of Rmap that can be used to map a CML-based
context model to a relational database. However, the formal semantics of ORM
and CML can be leveraged to provide integration with other implementations
such as fact-based reasoners (though it should be noted that some features of
CML—particularly the constructs related to imperfect information—may not
be supported).

Figure 1 illustrates the graphical notation using an example context model.
This example model is designed for use by context-aware communication ap-
plications such as the one described in [33]. The model captures user activities
in the form of a temporal fact type that covers past, present and future activ-
ities; associations between users, communication channels, and devices; and
locations of users and devices (both absolute and relative, where the latter is
represented as a derived fact type).

Each ellipsis in the figure depicts an object type—with the value in parentheses
describing the representation scheme used for the object type—while each box
denotes a role played by an object type within a fact type. The key summarises
the remainder of the notation used in the figure. A detailed discussion of both

6

Table 1
Example instantiation of the “located
at” fact type without alternatives.

Person Location

Fitzwilliam Darcy Kitchen

Elizabeth Bennet Study

Table 2
Example instantiation of the “located
at” fact type with alternatives.

Person Location

Fitzwilliam Darcy Kitchen

Fitzwilliam Darcy Dining

Elizabeth Bennet Study

the model and the software engineering process used in conjunction with CML
can be found in [33].

2.2 Support for reasoning

CML leverages the formality of ORM to support the evaluation of simple
assertions as well as SQL-like queries. One of the novel features of CML is
its ability to support querying over uncertain information (specifically, am-
biguous information represented using the “alternatives” construct) using a
three-valued logic. This can be illustrated using the “located at” fact type
from the model in Figure 1 as an example. Two possible instantiations of this
fact type are shown in Tables 1 and 2. Using the three-valued logic, the asser-
tion “Fitzwilliam Darcy located at Kitchen” evaluates to true with respect
to the first instantiation and possibly true with respect to the second.

To evaluate more complex conditions than can be captured by assertions,
Henricksen et al. define a grammar for formulating situations. Situations are
expressed using a novel form of predicate logic that balances efficient evalua-
tion against expressive power. They are defined as named logical expressions
of the form S(v1, ..., vn) : ϕ, where S is the name of the situation, v1 to vn are
variables, and ϕ is a logical expression in which the free variables correspond
to the set {v1, ..., vn}. The logical expression combines any number of basic
expressions using the logical connectives, and, or and not, and special forms
of the universal and existential quantifiers. The permitted basic expressions
are either equalities/inequalities or assertions. Situations can be incrementally
combined to form more complex logical expressions. Examples and further in-
formation can be found in [33].

2.3 Evaluation

One of the main strengths of CML is its support for various stages of the
software engineering process. Its graphical notation supports analysis and de-

7

sign of the context requirements of a context-aware application; the relational
representation and situation grammar support run-time representation and
querying. CML also provides more comprehensive support for capturing and
evaluating imperfect and historical information than many of the other context
modelling approaches that are currently in use.

However, CML has several weaknesses. It has a “flat” information model, in
that all context types are uniformly represented as atomic facts. If a hierar-
chical structure is needed, or one particular dimension of context is dominant
from the perspective of querying (as in spatial models, which place greater
importance on location than on other types of information), then other repre-
sentations may be more appropriate. CML also emphasises the development
of context models for particular applications or application domains, and does
not provide the support for interoperability that is found in models such as
Strang et al.’s ontology-based Aspect-Scale-Context model [66]. An attempt
to create a hybrid model that combines the respective advantages of CML and
ontology-based approaches (including support for hierarchical structures and
interoperability) is described by Henricksen et al. in [35]. The development of
hybrid models is also discussed further in Section 7.

3 Spatial models of context information

Space is an important context in many context-aware applications. Most con-
text definitions mention space as a vital factor: e.g., Schilit, Adams and Want
define three important aspects of context as “Where you are, who you are with
and what resources are nearby” [61]. Also, in the most frequently used context
definition by Dey et al. [19] space can be seen as a central aspect of context
entities: “An entity is a person, place or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselve”—places are spatial entities, and interaction typically
requires some vicinity. Thus, some context modelling approaches give space
and location a preferential treatment. As we will see, it is well suited to organ-
ise and efficiently access context information. Spatial existence also serves well
as an intuitive metaphor for non-physical context information (e.g., virtual in-
formation towers [42] for context-tagged web pages or Pascoe’s Stick-E-Notes
[51]). How people associate certain situations with location can be also seen
in the most common question they ask on a mobile phone: “Where are you?”
What they typically are interested in is not the exact location but the general
situation of the person they are talking to.

8

3.1 Context information model

Most spatial context models are fact-based models (see section 2) that organise
their context information by physical location. This could be the location of
the real-world entities which is described in the context information (e.g., the
boundaries of a room), the location of the sensor that measures the context
information, or, for non-physical context information, an associated location
as metaphor (e.g., Stick-E-Notes or virtual information towers).

This location information is either pre-defined (if the entities are static), or it
is obtained by positioning systems which track mobile objects and report their
position to a location management system. In general, two kinds of coordinate
systems are supported by positioning systems:

Geometric coordinates: Represent points or areas in a metric space, such as
the WGS 84 coordinates of GPS which represent the latitude, longitude, and
elevation above sea level of some point on the earth’s surface. Using geometric
functions such as the Euclidian distance allows distance calculation and allows
for nearest neighbour queries. Overlaps of geometric figures can be used to
specify ranges by their geometric extension and determine whether ranges are
included in each other which allows for range queries.

Symbolic coordinates: Symbolic coordinates are represented by an iden-
tifier, such as a room number or the ID of a cell or access point in wireless
telephone or local area networks. In contrast to geometric coordinates there is
no spatial relation offered by symbolic coordinates. In order to allow spatial
reasoning about inclusion (for ranges) and distances (for nearest neighbours)
explicit information about the spatial relations between pairs of symbolic co-
ordinates has to be provided. Note that this location model also is applicable
if there is no explicit modelling of space but only relations between objects
(as in [52]).

Spatial context models can be described along the tiers of spatial ontologies
proposed by A. Frank [24]:

• Tier 0 is the ontology of the physical reality. It is based on the assumption
that there is exactly one real world; hence, for every property in the world
and for a given point in time-space there is a single value.

• Tier 1 includes observations of reality and is the first tier that can be ac-
cessed in context models. Here, a value can be derived at a location with a
given observation type. The type determines the measurement scale of the
value (e.g., nominal or rational) and the measurement unit (e.g., metres or
seconds). For spatial values, a coordinate system must be given. Values nor-
mally have a limited accuracy due to observation errors. Fact-based context
models are typically situated on that tier.

9

• In tier 2, single observations are grouped with individual objects that are
defined by uniform properties. Now, the value of an observation is the state
of a whole object, given by an identifier. Frank only considers physical ob-
jects in this tier, i.e., “things which exist in the physical world and can
be observed by observation methods”. They have a geometric boundary in
the world, but it can change over time (e.g., dunes or fluids). Up to tier
2, the ontology tiers cover data that can be seen as objective reality—you
can send out a team of geographers or students to model physical objects
and they will come to an agreement about their observations. Thus, this
kind of information can be easily shared between different context-aware
applications.

• In tier 3, the socially constructed reality is represented. Social reality in-
cludes all objects and relations that are created by social interactions. Such
properties are classified and named within the context of administrative,
legal or institutional rules. Object names belong to this tier since they are
assigned by culture; for many important things (but not all) there are func-
tions to determine the name and to find the object by name in a certain
environment.

• Finally, in tier 4 the rules are modelled that are used by cognitive agents
(both human and software) for deduction. This tier is normally built into
database query languages, applications or reasoning engines of knowledge
based systems. Ontology based models of context information (see Section 4)
typically cover all tiers up to this level.

Although the tiered model of Frank is just an abstract conceptualization of
different (spatial) representations of the world, it is useful to distinguish be-
tween various implementations of spatial context models (as can be seen in
[7]). For example, fact-based models like the Context Modelling Language of
Henricksen et al. (Section 2 and [33]) cover tier 1–3, and the grammar used
to define situations is located at tier 4.

The spatial context model developed in the Nexus project (called Augmented
World Model [50]) is an object-based class hierarchy of context information
that supports multi-inheritance (a camera can be both a MobileObject and
a Sensor), multi-attributes (a MobileObject can have multiple instances
of its position attribute that differ in their meta data, e.g., the measurement
time), and both a geometric coordinate system (that supports multiple spatial
reference systems) and a simple symbolic location system (based on spatial re-
lationships). Most object classes inherit from the class SpatialObject, which
makes the Augmented World model inherently spatial: almost all objects (real
and virtual) are modelled with a location, either by their physical location or
by a meaningful association metaphor (like the location of a virtual infor-
mation tower for web sites). Because the Nexus context model was designed
to be sharable between different context-aware applications in a potentially
global scope and thus to be scalable to a high amount of context data [27]. In

10

its current implementation, the managed context information only represents
information of tiers 1–3. Higher-level context information like situation are
managed by the applications.

In contrast to the Nexus model, the Equator project context model [46] is a
typical contextual ontology that represents all tiers by an OWL class model.
Its location model is a hierarchical notion of inter-connected symbolic spaces,
such as Buildings, Floors and Rooms. Properties define spatial relations
between these spaces. Although the ontology also offers coordinate features
(properties that represent, e.g., a GPS location), Millard et al. states that it
is very hard to perform any inference over them using a normal reasoner, as
they are usually not spatially aware.

3.2 Support for reasoning

Spatial context models allow reasoning about the location and the spatial
relationships of objects. Such relations cover the inclusion in a distinct area
or range and the distance to other entities. According to [6], there are three
typical spatial queries on spatial context information: (i) Position: Retrieve the
position of an object; (ii) Range: A number of objects which are located in
a spatial range are retrieved; and (iii) Nearest Neighbour: These queries offer
a list of one or more objects which are closest to the position of an object,
like queries for the next printer, restaurant, or webcam. These queries become
even more challenging when the position of the object is imprecise, and given
as an area.

Although these queries at first seem simple and obviously necessary for a
variety of context-aware applications, their efficient processing depends on
the underlying context information management system, that may possibly
use spatial database support or other specialized modules. Grossmann et al.
[27]show how the characteristics of different types of context information can
be used to design efficient management systems. The two main factors are
update rate (how often a certain context information is updated—by sensors,
by humans, or almost never) and usage for selection (how often a certain
context information is used to restrict the set of relevant context information).
The latter is often referred to as primary context. Since many context-aware
applications use space as a primary context, it is reasonable to design context
management systems to efficiently support spatial queries, e.g., by managing
spatial indexes.

Also, if the amount of context information gets very large, it can be partitioned
along the spatial dimension (e.g., by introducing context servers with spatial
service areas).

11

3.3 Evaluation

Obviously, spatial context models are well suited for context-aware applica-
tions that are mainly location-based, like many mobile information systems.
However, even if location is not a primary context for a context-aware appli-
cation, a spatial organisation of the context information may be beneficial:
if the amount of managed context information is large, spatial partitioning
can be used to cope with the complexity. In particular, mobile systems can
benefit from spatial context models: due to their inherent (potentially global)
mobility, they are likely to need large amounts of context information in total,
which can be easily preselected to relevant context information in the vicinity
by using a spatial predicate. As we will see later, hybrid context modelling
approaches separate the fact-based context management (tier 1–3 in Frank’s
hierarchy) from higher level reasoning (tier 4) functions. Thus, a spatial pre-
selection of relevant context information could be reasonable to speed up the
reasoning process by reducing the size of the knowledge base ([7,49]).

A main consideration for spatial context models is the choice of the underlying
location model. Geometric and geographic location models offer simple map-
ping to map data and GPS sensor data, while symbolic and relational location
models are easier to build up and represent a simple perception of space (with
relations like part-of and located-near). This choice also determines how the
context information should be managed (e.g., by a spatial database), what
reasoning methods and queries are available and what access paths have to be
built up.

A drawback of spatial context model is the effort it takes to gather the location
data of the context information and to keep it up to date. Thus, if the spatial
dimension is of no importance (or only including simple spatial relationships
like the meeting of two users), this effort could be saved.

4 Ontology based models of context information

Context, as intended in this paper, can be considered as a specific kind of
knowledge. Thus, it is quite natural to investigate if any known framework
for knowledge representation and reasoning may be appropriate for handling
context. The trade-off between expressiveness and complexity of reasoning
has driven most of the research in symbolic knowledge representation in the
last two decades, and description logics [3] have emerged among other logic-
based formalisms, mostly because they provide complete reasoning supported
by optimised automatic tools. Since ontologies are essentially descriptions of
concepts and their relationships, it is not surprising that the subset of the

12

OWL language admitting automatic reasoning (i.e., OWL-DL) is indeed a de-
scription logic. Ontology-based models of context information exploit the rep-
resentation and reasoning power of these logics for multiple purposes: a) the
expressiveness of the language is used to describe complex context data that
cannot be represented, for example, by simple languages like CC/PP [40]; b)
by providing a formal semantics to context data, it becomes possible to share
and/or integrate context among different sources; c) the available reasoning
tools can be used both to check for consistency of the set of relationships
describing a context scenario, and, more importantly, to recognise that a par-
ticular set of instances of basic context data and their relationships actually
reveals the presence of a more abstract context characterisation (e.g., the user’s
activity can be automatically recognised).

In this section, we briefly illustrate the main ontology-based context models
that have been proposed, how reasoning is performed, and we identify current
critical issues.

4.1 Context information model

The formalism of choice in ontology-based models of context information is
typically OWL-DL [38] or some of its variations, since it is becoming a de-facto
standard in various application domains, and it is supported by a number of
reasoning services. By means of OWL-DL it is possible to model a particular
domain by defining classes, individuals, characteristics of individuals (datatype
properties), and relations between individuals (object properties).

Complex descriptions of classes and properties can be built by composing
elementary descriptions through specific operators provided by the language.
For instance, given two atomic classes Person and Female, the class Male can
be defined as:

Male ≡ Person � ¬Female.

More complex definitions can be obtained by using operators such as property
restrictions that can force all/some values of a certain property to belong to
a given class, or can force a property to have at least k values.

Hence, complex context data, intended as those data that can be inferred
by means of reasoning tasks on the basis of raw data directly acquired from
sensors, and other complex context data, can be represented by structured
OWL-DL expressions. These data typically include information regarding the
sociocultural environment of users, complex user preferences regarding the
adaptation of services, and activities. For example, the following definition

13

(taken by the ontology used within the CARE framework [8,1]) is used to
describe BusinessMeeting as including any activity performed in a conference
room within a company building, and having at least two actors, each of which
is an employee: 1

BusinessMeeting � Activity � ≥ 2 hasActor �
∀ hasActor.Employee �

∃ hasLocation.(ConfRoom � CompanyBuilding)

In addition to providing an expressive formalism for representing complex con-
text data, ontologies are well-suited for knowledge sharing since they provide
a formal specification of the semantics of context data. We point out that
this feature is particularly important in mobile and pervasive environments,
in which different heterogeneous and distributed entities must interact for ex-
changing users’ context information in order to provide adaptive services. To
this end, various OWL ontologies have been proposed for representing shared
descriptions of context data. Among the most prominent proposals are the
SOUPA [15] ontology for modelling context in pervasive environments, and
the CONON [71] ontology for smart home environments. Those shared ontolo-
gies can be integrated with application-specific models of context by means of
extensions of the OWL language, such as the one proposed in [10].

OWL-DL ontological models of context have been adopted in several archi-
tectures for context-awareness; among the others, we recall the Context Bro-
ker Architecture (CoBrA) [14] and the SOCAM [28] middleware, that adopt
the SOUPA and CONON ontologies, respectively. The DAML+OIL ontol-
ogy language (a predecessor of OWL) is the basis of the context model of
the GAIA [56] middleware for active spaces. In GAIA, reasoning for deriv-
ing new context data is performed by means of rule-based inferencing and
statistical learning; ontologies are used to provide a clear semantics to data
derived through different reasoning techniques. Finally, some architectures for
context-awareness (e.g., the semantic eWallet [25]) have adopted more expres-
sive ontology languages obtained by extending OWL-DL with rules.

4.2 Support for reasoning

A further benefit of ontologies with respect to simpler representation for-
malisms consists in the support of reasoning tasks. Indeed, on the basis of
the asserted knowledge it is possible to i) automatically derive new knowledge
about the current context, and ii) detect possible inconsistencies in the con-
text information. With respect to i), ontological reasoning can be executed

1 Here we use DL syntax, but an equivalent OWL description can be easily obtained.

14

for inferring new context information based on the defined classes and prop-
erties, and on the individual objects retrieved from sensors and other context
sources. For instance, it is possible to derive the set of individual objects that
are related to a given one by a particular property (e.g., the set of activities
taking place in a specific location), or to calculate the most specific class an
individual object belongs to (e.g., the fact that the activity performed by a
given employee is a business meeting).

Example 1 Consider the case of Alina, the user of a context-aware messag-
ing service provided by her workplace infrastructure. The service filters and
redirects messages by considering various context data, including the user’s
current activity. User activities are modelled by the ontology described in [1].
Suppose that Alina is currently in the conference room with Will and Mary,
two colleagues of hers, and that the workplace infrastructure includes an in-
door positioning system that provides accurate information about the location
of employees. Since the infrastructure detects that the three employees are sit-
ting at the same table, the context-aware system instantiates a new Activity
A having them as actors. In order to precisely recognise the kind of activity
performed by the employees, the system performs ontological reasoning for cal-
culating the most specific class the instance A belongs to. Hence, since the
description of A corresponds to the one of BusinessMeeting (in fact, Alina,
Will, and Mary are all employees, and they are in a conference room within
a company building), the current activity of Alina is classified as a business
meeting. As a consequence, according to the adaptation policies applied by the
messaging service, during her meeting all the non-priority calls are redirected
to Alina’s answering machine.

With respect to ii), we point out that consistency checking is crucial in the
definition of an ontology, as well as in its population by new instances. Hence,
automatic consistency checking can be performed to capture possible incon-
sistencies in the definition of the classes and properties of the ontology (e.g.,
a class being a subclass of two disjoint classes), or in its population (e.g., a
person being in different rooms at the same time).

4.3 Evaluation

With respect to simpler approaches (e.g., key-value and markup models), on-
tological models of context provide clear advantages both in terms of expres-
siveness and interoperability. However, experiences with the development of
context ontologies show that the operators provided by OWL-DL are some-
times inadequate to define complex context descriptions (see, e.g., [2]). This
problem is due to the fact that the constructors included in the OWL-DL
language were chosen in order to guarantee decidable reasoning procedures.

15

For this reason, OWL-DL does not include very expressive constructors that
would be helpful for modelling complex domains, such as users’ activities.

Consider for example the isColleagueOf property, which is very useful for
modelling activities performed within an organisation. A straightforward def-
inition of that property can be given by composing the atomic properties
isEmployedBy and isEmployerOf:

isColleagueOf ≡ isEmployedBy ◦ isEmployerOf

Indeed, if a person a is employed by a person b that is the employer of c,
then a is colleague of c. Unfortunately, this definition cannot be expressed in
OWL-DL. In fact, the language – in order to preserve its decidability – does
not include a constructor for composing relations. Similarly, OWL-DL does
not include some expressive class constructors, such as the ones that restrict
the membership to a class only to those individual objects that are fillers
of two or more properties (these constructors are called role-value-maps in
the literature). Formally, a role-value map R ⊆ S defines the class of indi-
viduals i such that the individuals related to i by property R are related to
i also by property S (R and S can be composed properties). For example,
given a property isCoactorOf that relates individuals performing an activ-
ity together, the role-value-map (isCoactorOf ⊆ isColleagueOf) defines the
class of individuals having as coactors only persons that are their colleagues.
If for the sake of simplicity one assumes than an individual cannot perform
more than one activity at a time, a more precise definition of BusinessMeeting
could be given by substituting Employee in that definition with (isCoactorOf
⊆ isColleagueOf).

Even if some proposals for augmenting the expressiveness of OWL-DL with
description logic constructors exist (see [1] for a discussion of some of these
proposals), due to the above mentioned limitations the definition of some
context domains with OWL-DL can be problematic. Hence, the possibility
of augmenting the expressivity of ontological languages through an extension
with rules has been recently investigated by the Semantic Web community,
and brought to the definition of logic languages such as SWRL [37], adopted
for example in [13]. These rule extensions are not really hybrid approaches
since rules are fully integrated in ontological reasoning. The main problem
with this approach is that reasoning in OWL-DL is already computationally
expensive, as described in the following section, and the proper integration of
rules makes the resulting language undecidable.

In addition to the above mentioned expressiveness limitations, ontological rea-
soning with OWL-DL also poses serious performance issues. Indeed, a natural
solution for deriving complex context data through ontological reasoning is
to perform the realisation of an individual of interest (e.g., the individual

16

representing the user’s Activity) in order to find the most specific class the
individual belongs to (e.g., a BusinessMeeting). Unfortunately, the realisation
problem has NExpTime complexity. One could argue that this is a worst-case
complexity, and that current optimised reasoners can still be practical for
many applications. However, performance issues when reasoning with OWL-
DL are confirmed by experimental evaluations with different ontology-based
context reasoning architectures (see, e.g., [67,1]). Hence, online execution of
ontological reasoning poses scalability issues, especially when the ontology is
populated by a large number of individuals.

In order to improve the efficiency of reasoning with OWL-DL, various optimi-
sations based on the use of relational database techniques have been recently
proposed. A well-known proposal in this sense is the InstanceStore system [36].
However, at the time of writing, InstanceStore has some limitations that are
critical for reasoning with context data. Indeed, it does not allow the instanti-
ation of relations between individuals. In some cases, efficiency problems can
be avoided by executing particularly onerous tasks asynchronously with re-
spect to the service requests. Details about these optimisations are reported
in [1].

5 Situation modelling and reasoning

This and the following section do not present general context modelling ap-
proaches, but explore state of the art techniques to deal with situations as
high level context data, and with uncertainty, respectively.

Information from physical sensors, called low-level context and acquired with-
out any further interpretation, can be meaningless, trivial, vulnerable to small
changes, or uncertain [69]. Schilit et al. [61] observed hence that context en-
compasses more than just the user’s location, because other things of interest,
including the user’s social situation, are also changing. The limitation of low-
level contextual cues when modelling human interactions and behaviour risks
reducing the usefulness of context-aware applications. A way to alleviate this
problem is the derivation of higher level context information from raw sensor
values, called context reasoning and interpretation. The idea is to abstract
from low-level context by creating a new model layer that gets the sensor per-
ceptions as input and generates or triggers system actions. The selection and
execution of actions has long been studied in the field of Artificial Intelligence
under the theme of planning. Almost all planning techniques since the 1950’s
are formally defined using the concept of a state space. In the field of context-
aware computing, the notion of a situation is commonly used as a higher-level
concept for a state representation. Initially, the term ”situation” was used in
linguistics and natural language semantics. In 1980, Barwise and Perry wrote

17

in their paper The Situation Underground [4] of situations:

“The world consists not just of objects, or of objects, properties and re-
lations, but of objects having properties and standing in relations to one
another. And there are parts of the world, clearly recognised (although not
precisely individuated) in common sense and human language. These parts
of the world are called situations. Events and episodes are situations in time,
scenes are visually perceived situations, changes are sequences of situations,
and facts are situations enriched (or polluted) by language.”

Situations are ubiquitous. We cannot escape from being in a situation. In
context-aware applications, situations are external semantic interpretations
of context [22], permitting a higher-level specification of human behaviour in
the scene and the corresponding system services. Situations inject meaning
into the application and are more stable, and easier to define and maintain
than basic contextual cues. Adaptations in context-aware applications are then
caused by the change of situations (i.e., a change of a context value triggers
adaptation if the context update changes the situation). Design and imple-
mentation of the applications become much easier with situations because the
designer/programmer can operate at a high level of abstraction (situation)
not on all context cues that create the situation. For example, [44] decribes
six different ways to specify the situation in meeting now based on contextual
cues:

• co-location of people and agenda information
• co-location of filled coffee cups in a room
• weight sensors on the floor
• devices in the room (lights, projector, PowerPoint on PC)
• sounds and noises
• cameras (“watch” meeting room for activity)

In each case, the situation in meeting now remains stable and appropriate sys-
tem actions can simply be associated to this situation, while the contextual
cues regarding this situation may change. Additional contextual cues rele-
vant to this situation can be added or obsolete ones can be removed without
changing the situation itself, but by modifying only its specification.

5.1 Defining situations

As situations are semantic abstractions from low-level contextual cues, human
knowledge and interpretation of the world must be integrated into a model
or situation representation. This can either be done during a specification
process, i.e., a human defines the situations and their relationship based on his
knowledge, or situations are recognised and learned automatically, i.e., sensor

18

perceptions are aggregated and associated to a human-defined situation label
using machine learning techniques.

The latter relates to the domain of human activity recognition. Most ap-
proaches in this area focus on the classification of basic human activities
or scenarios without considering a richer contextual description (e.g., [48]).
Some recent work, however, attempts to acquire high-level contextual mod-
els involving situations. Clarkson [16] proposes a wearable system capable of
distinguishing coarse locations and user situations. Different locations and sit-
uations of an individual user like “home”, “at work”, “bathroom” or “restau-
rant” are isolated and then recognised based on a clustering of video and audio
data recordings. McCowan et al. [45] go further by proposing a two-layered
framework for modelling and recognising individual and group actions in meet-
ings. A first layer detects individual actions like “writing” or “speaking” from
individual audio and video recordings. The second group layer fuses the in-
dividual output of the first layer as well as group audio and video features
(coming from projector screen and white-board). The output of the second
layer are group situations like “discussion”, “monologue”, “note-taking”, or
“presentation”. Brdiczka [11] finally proposes a four-layered situation learn-
ing framework. This framework acquires different parts of a situation model,
namely situations and roles, with different levels of supervision. Situations like
“presentation”, or “aperitif” and roles played by individuals like “lying down”
or “sitting and gesturing” are learned from individual audio and video data
streams. Depending on number and kind of observations provided for recog-
nition and situations to be recognised, these learning-based approaches have
a correct recognition rate of situations between 85% and 100% (95 % in [16],
88.8 % in [45], and 100 % (with presegmentation) in [11]).

However, these approaches require an important training period during which
several examples of each situation and related concepts are collected and anal-
ysed. This training phase often needs as much human intervention (e.g., for
semantic labelling) as a manual situation specification phase would require.
The granularity of the learned concepts is further influenced by the character
and availability of the low-level sensor data. For example, if an application
needs a finer granularity of the situation “meeting”, e.g., a “conference meet-
ing” situation, we would need at least a recording of one or two conferences
(which may only take place once a year). Finally, machine learning meth-
ods choose a tradeoff between generalisation and specification when acquiring
concepts from sensor data recordings, which does not always meet the correct
semantics, hence resulting in wrong detections of situations.

When contextual cues and application needs of situations perception are known
in advance, a human can specify the situations manually. In context-aware
computing, most approaches for manual situation specification refer to Dey’s
context definition [19] as “any information that can be used to characterise

19

Fig. 2. Temporal Situation Model of the Automatic Cameraman system [57] that
proactively chooses the viewpoint for recording a lecture (left) and compiled Petri
net (right) (pictures from [57])

the situation of an entity”. An entity can be a person, place or object consid-
ered relevant to user and application, including the user and the application
themselves. Dey defines as situation further as the “description of the states of
relevant entities”. A situation is thus a temporal state within context. Early
approaches use formal logics to describe and represent these states. A first
representative of this kind is the Situation Theory proposed by Barwise and
Perry [5]. Situation theory tries to cover model-theoretic semantics of natural
language in a formal logic system. The situation calculus [58] further provides
a logical language for reasoning about action and change. Changing scenarios
are represented as a set of second-order logic formulae.

Even though approaches based on formal logics provide a high-level of ab-
straction and formality for specifying the situations, they are error-prone in
the domain of context-aware computing due to the incompleteness and am-
biguity of contextual cues and information. Limited reasoning performance
further reduces the scalability of these approaches in real-world applications.
To cope with this, some approaches try to balance efficient evaluation and
expressive power (e.g., the grammar for formulating situations described in
section 2). Assertions that are interpreted under a closed-world assumption
are used to reduce the values in quantified expressions describing situations.
Crowley et al. [17] introduce the concepts of role and relation in order to char-
acterise a situation. Roles involve only one entity, describing its activity. An
entity is observed to “play” a role. Relations are defined as predicate functions
on several entities, describing the relationship or interaction between entities
playing roles. This model is less formal (even though a formal definition of
the concepts is provided [59]) and highlights the application viewpoint by
proposing different implementations for the situations [57].

20

5.2 Relationships between situations

While many approaches only focus on defining and recognising situations,
some approaches also specify and model situation relationships. Approaches
based on predicate logic (e.g., [33] discussed in section 2 or [55]) define situa-
tions as a set of conditions on the context. From this point of view, situations
are used to aggregate and model specific constraints that are to be recognised
in order to execute certain actions. The situation modelling is not intended
to be exhaustive, i.e., not the whole world with all possible situations needs
to be modelled. Therefore, situation recognition is instantaneous and explicit
situation transition does not necessarily exist (e.g., when a situation becomes
invalid, this does not necessarily mean that there is a successor situation).
Situation relationships are not modelled, also due to complexity constraints.

Other approaches, however, explicitly model situation relationships. One mo-
tivation is to considerably reduce the search space for potential situations to
be recognised, once the actual situation is known and knowing possible rela-
tionships (e.g., knowing possible successor situations of the current situation).
The state aspect of situations is often emphasised by the constraint that at
least one situation must be active at a time. This can provide more stabil-
ity and better performance, but requires a complete (exhaustive) situation
model for the context-aware application. All potential situations, their rela-
tionships and transitions must be included in this model, which is not always
possible, in particular in informal settings and scenarios. In [57], a situation
model is defined in order to provide an automatic cameraman service that
proactively chooses the viewpoint for recording a lecture (Figure 2 left). Situ-
ations relationships are represented by Allen’s temporal logic. For execution,
the temporal relations are automatically compiled into a synchronised Petri
net that takes contextual changes as input to trigger the situation transitions,
while one or more places of the Petri net represent the intrinsic situations
(Figure 2 right). Even though the temporal relations implemented by a Petri
net provide high stability and good performance of the context-aware appli-
cation, only a limited number of situations in a rather formal setting (e.g.,
lecture) can be covered.

6 Uncertainty of context information

Both the physical world, itself, and our measurements of it are prone to uncer-
tainty. Hence, one of the key requirements of context-awareness is capturing
and making sense of imprecise, and sometimes conflicting data, about the
physical world.

21

Different types of entities (or software objects) in the environment must be
able to reason about uncertainty. These include entities that sense uncertain
contexts, entities that infer other uncertain contexts from these basic, sensed
contexts, and applications that adapt how they behave on the basis of un-
certain contexts. Having a common model of uncertainty that is used by all
entities in the environment makes it easier for developers to build new services
and applications in such environments and to reuse various ways of handling
uncertainty.

6.1 Models for uncertainty

There has been work in addressing the problem of representing, reasoning
about and overcoming uncertainty in context information. Hui Lei et al. de-
scribe a context service that allows context information to be associated
with quality metrics, such as freshness and confidence [41]. Castro et al. use
Bayesian networks for sensor fusion [12], in particular considering location
information. Schmidt et al. associate each of their context values with a cer-
tainty measure that captures the likelihood that the value accurately reflects
reality [62]. Gray and Salber include information quality as a type of meta-
information in their context model, and describe six quality attributes: cov-
erage, resolution, accuracy, repeatability, frequency and timeliness [26]. The
model described by Henricksen et al. [34] supports quality by allowing associ-
ations between objects to be annotated with a number of quality parameters,
which capture the dimensions of quality considered relevant to that associ-
ation. Dey et al. suggest a mechanism for overcoming uncertainty whereby
ambiguous information can be resolved by a mediation process involving the
user [20]. This solution is particularly viable when the context information
under consideration is small in volume and doesn’t change rapidly, so that the
user is not unreasonably burdened.

Ranganathan et al. [54] provide a categorisation of different kinds of quality
metrics that can specifically be associated with location information obtained
from different kinds of sensors. These metrics are:

(1) Resolution, which is the region that the sensor says the mobile object is in.
Resolution can be expressed either as a distance or as a symbolic location,
depending on the kind of sensor. Sensors like RF badges or GPS devices
give resolution in terms of distance. For example, some GPS devices have
a resolution of 50 feet, which means that the object lies within a circle of
50 feet from the location given. Other sensors such as card-readers give
resolution in terms of a symbolic location, like a room. For example, a
card reader says that a person is somewhere inside a room.

(2) Confidence, which is measured as the probability that the person is ac-

22

tually within a certain area returned by the sensor. This probability is
calculated based on which sensors can detect the person in the area of
interest.

(3) Freshness, which is measured based on the time that has elapsed since
the sensor reading. All sensor readings have an expiry time, beyond which
the reading is no longer valid.

Ranganathan et al. [53] also developed an uncertainty model based on a pred-
icate representation of contexts, where each context predicate is associated
with a confidence value. The confidence value associated with a predicate
measures the probability (in the case of probabilistic approaches) or the mem-
bership value (in the case of fuzzy logic) of the event corresponding to the
context predicate being true. For example, prob(location(carol, in, room 3233))
=0.5 means that the probability that Carol is in Room 3233 is 0.5. This model
forms the basis for reasoning about uncertainty using various mechanisms such
as probabilistic logic, fuzzy logic and Bayesian networks. They incorporated
these reasoning mechanisms in Gaia [60], their distributed middleware system
for enabling Active Spaces.

6.2 Reasoning on uncertainty

A number of mechanisms have been proposed in the literature for reasoning
on uncertainty. Broadly, there are two main purposes for reasoning on uncer-
tainty : improving the quality of context information, and inferring new kinds
of context information. Reasoning to improve the quality of context informa-
tion typically takes the form of multi-sensor fusion where data from different
sensors are used to increase confidence, resolution or any other context qual-
ity metrics. Reasoning for the purpose of inferring new context information
typically takes the form of deducing higher level contexts or situations (like
the activity of a user) from lower level contexts (like the location or instant
messaging status of the user). Since we cannot directly sense the higher level
contexts, these contexts may be associated with a certain level of uncertainty,
depending on both the accuracy of the sensed information and precision of
the deduction process.

Different approaches have been used for reasoning on uncertain context in-
formation. In this paper, we describe some of these approaches: fuzzy logic,
probabilistic logic, Bayesian networks, Hidden Markov models, and Dempster-
Schafer theory of evidence.

Fuzzy Logic. In fuzzy logic [70], confidence values represent degrees of mem-
bership rather than probability. Fuzzy logic is useful in capturing and rep-
resenting imprecise notions such as “tall”, “trustworthy”, and “confidence”

23

and reasoning about them. The elements of two or more fuzzy sets can be
combined (fused) to create a new fuzzy set with its own membership func-
tion. Examples of fusion operations are intersection, union, complement, and
modification. Fuzzy logic is well suited for describing subjective contexts, per-
forming multi-sensor fusion of these subjective contexts and resolving potential
conflicts between different contexts.

Probabilistic Logic. Probabilistic logic allows making logical assertions that
are associated with a probability. One such logic, based on proposition-logic,
was proposed by Fagin et al [23]. They specify a complete axiomatisation,
and also show that the complexity of deciding satisfiability in their logic is
no worse than that of propositional logic. This logic lets us make statements
such as “the probability of E is less than 1/3” and “the probability of E
is at least twice the probability of F,” where E and F are arbitrary events.
Probabilistic logic lets us write rules that reason about events’ probabilities
in terms of the probabilities of other related events. These rules can be used
both for improving the quality of context information through multi-sensor
fusion as well as for deriving higher level probabilistic contexts. The rules
can also be used for resolving conflicts between context information obtained
from different sources (such as when different location sensing modalities give
different locations for the same entity). Various rule engines like Prolog can
then be used to reason on these rules. Ranganathan et al [53] have used such
rules for encoding access control policies.

Bayesian Networks. Bayesian networks are directed acyclic graphs, where
the nodes are random variables representing various events and the arcs be-
tween nodes represent causal relationships. The main property of a Bayesian
network is that the joint distribution of a set of variables can be written as
the product of the local distributions of the corresponding nodes and their
parents. Bayesian networks are particularly efficient in representing and stor-
ing conditional probabilities, if the dependencies in the joint distribution are
sparse. Examples of use of Bayesian networks are in location sensor fusion [12]
and in diagnosing the source of faults in pervasive computing environments
[53]. In general, Bayesian networks are well suited for combining uncertain in-
formation from a large number of sources and deducing higher-level contexts.

Hidden Markov Models. A Hidden Markov Model (HMM) represents stochas-
tic sequences as Markov chains; the states are not directly observed, but are
associated with observable evidences, called emissions, and their occurrence
probabilities depend on the hidden states. These models have been used for
location prediction. For example, [43] use a hierarchical Markov model that
can learn and infer a user’s daily movements through an urban community.
The model uses multiple levels of abstraction in order to bridge the gap be-
tween raw GPS sensor measurements and high level information such as a
user’s destination and mode of transportation.

24

Dempster Shafer Theory. The Dempster-Shafer theory is a mathemati-
cal theory of evidence [63] based on belief functions and plausible reasoning,
which is used to combine separate pieces of information (evidence) to calculate
the probability of an event. It is often used as a method of sensor fusion, by
obtaining degrees of belief for one question from subjective probabilities for
a related question, and then combining such degrees of belief when they are
based on independent items of evidence. The belief in a hypothesis is consti-
tuted by the sum of the masses of all sets enclosed by it (i.e., the sum of the
masses of all subsets of the hypothesis). This reasoning approach has been
used by Wu to deal with uncertainty associated with context sensing [68].
In his implementation, an Aggregator receives video and audio features from
a camera and a set of microphone widgets to determine the likelihood of a
participant’s focus of attention in a meeting.

Dargie [18] has proposed a conceptual architecture where different reasoning
mechanisms can be incorporated in a unified manner for acquiring, aggre-
gating and reasoning about context information. In this architecture, different
reasoning mechanisms are used in different scopes: fuzzy logic may be used for
defining the conceptual states of a primitive context to enable human-like rea-
soning; Dempster-Shafer Theory for combining the independent observations
of multiple sensors each of which observes one and the same phenomenon;
and Hidden Markov Models and Bayesian Networks for actually computing a
higher-level context.

7 Hybrid context models

In this section we investigate context modelling approaches that try to inte-
grate different models and different types of reasoning in order to obtain more
flexible and general systems. We first discuss some limitations of previously
presented models, arguing that they may benefit from the integration with
others. Then, we illustrate some existing approaches in this direction, and fi-
nally we provide general ideas on how a more comprehensive hybrid model
may be designed.

7.1 Why hybrid models are needed

The previous sections have illustrated the main approaches for context mod-
elling and reasoning that can be found in the literature. Despite each approach
may provide an effective solution for a particular domain, and/or for a partic-
ular type of reasoning, none of them seems to provide a solution to the general
problem, from the acquisition of data from sensors to the delivery to applica-

25

tions of high level context data. Similarly, none of them can simultaneously
satisfy all the requirements illustrated in the introduction.

Spatial models provide efficient procedures for the execution of typical spa-
tial queries; however, they do not always cope with the uncertainty of actual
location readings. Moreover, interoperability among different spatial models
can be easily achieved when the location information is confined to very sim-
ple spatial data (e.g., points in the space represented by their coordinates in
the WGS 84 standard); if more complex spatial domains are to be modelled,
interoperability can be obtained only by adopting expressive languages (e.g.,
coupling the different models with a shared ontology of location).

With regard to fact-based models, the CML language has advantages in its
support for software engineering and in the good balance between expressive
power and efficient reasoning procedures for that language. Indeed, the predi-
cate logic supported by CML is well suited for expressing dynamic situations.
However, in order to preserve efficiency, that language is less expressive than
ontological languages like OWL-DL. A possible shortcoming of CML with
respect to more expressive languages consists in the lack of support for hi-
erarchical context descriptions. Moreover, even if CML supports queries over
uncertain information through a three-valued logic, a deeper support for mod-
elling and reasoning about uncertainty is desirable.

Finally, ontological models have clear advantages regarding support for a) in-
teroperability, b) heterogeneity, and c) representation of complex relationships
and dependencies among context data. However, when considering the trade-
off between expressiveness and complexity, the choice of ontological models
may not always be satisfactory. In particular, in addition to the expressivity
and complexity issues illustrated in Section 4, we argue that ontologies are not
well suited to represent some dynamic context data such as users’ adaptation
preferences; these data can be more profitably modelled by lower-complexity,
restricted logics (e.g., those proposed in [33] and [9]). Moreover, even if some
preliminary proposals to extend OWL-DL to represent and reason about fuzzi-
ness and uncertainty exist (see, e.g., [64,21]), at the time of writing, ontology
languages and related reasoning tools do not properly support uncertainty in
context data.

The above considerations seem to suggest that different models and reason-
ing tools need to be integrated with each other. Though a single expressive
representation language fulfilling most of the identified requirements could
probably be defined, there are strong indications that the resulting complex-
ity of reasoning would make it useless in real-world scenarios. In the area of
knowledge representation, an alternative approach to the use of a single very
expressive formalism has been identified in hybrid knowledge representation
formalisms ; i.e., formalisms composed by different sublanguages to represent

26

different kinds of knowledge, and loosely coupled reasoning procedures. One
of the advantages of such formalisms is that the complexity of hybrid rea-
soning is generally no worse than the complexity of reasoning with the single
sublanguages. In the next section we report two different hybrid approaches
proposed for context representation and reasoning.

7.2 Existing hybrid approaches to context modelling

Hybrid fact-based/ontological model. Henricksen et al. [35] propose a
hybrid approach to context modelling, combining ontologies with the fact-
based approach provided by the CML language. The goal is to combine the
particular advantages of CML models (especially the handling of ambiguous
and imperfect context information) with interoperability support and various
types of reasoning provided by ontological models. The hybrid approach is
based on a mapping from CML modelling constructs to OWL-DL classes and
relationships. It is worth noting that, because of some expressivity limitations
of OWL-DL, a complete mapping between CML and OWL-DL cannot be ob-
tained. With respect to interoperability issues, the advantages gained by an
ontological representation of the context model are clearly recognisable. How-
ever, with respect to the derivation of new context data, experiences with the
proposed hybrid model showed that ontological reasoning with OWL-DL and
its SWRL extension did not bring any advantage with respect to reasoning
with the CML fact-based model. For this reason, ontological reasoning is per-
formed only for automatically checking the consistency of the context model,
and for semantic mapping of different context models.

Loosely coupled markup-based/ontological model. The CARE [8,1]
framework for context-awareness adopts a context modelling approach that is
based on a loose interaction between a markup model – extended with policy
rules expressed in a restricted logic programming language – and an onto-
logical model. The interaction between these models is realised through the
representation of context data by means of CC/PP profiles which contain a
reference to OWL-DL classes and relations. In order to preserve efficiency, on-
tological reasoning is mainly performed in advance with respect to the service
provision. Whenever relevant new context data is acquired, ontological rea-
soning is started, and derived information is used, if still valid, at the time of
service provisioning together with efficient rule evaluation. Complex context
data (e.g., the user’s current activity) derived through ontological reasoning
can be used in rule preconditions in order to derive new context data such as
user preferences. As an example, consider the following rule:

hasCurrActivity
∗(x,BusinessMeeting) → hasAvailState(x,Busy).

27

The rule precondition involves complex context data – identified by a star
symbol – that represents the current activity of an individual instance x (in
this case, the current user). Ontological reasoning is asynchronously performed
for all predicates that may be useful in the rules. In this case, it is used to
identify which among known classes of user activities better fit with the avail-
able context data for user x; in this example, if BusinessMeeting is identified
by that process, the rule engine derives that the availability state of the cur-
rent user is busy. Note that it may be the case that star -predicates cannot be
evaluated within the real-time constraints imposed by the application, and/or
that the pro-actively derived value is no more valid at the time of evaluation.
Hence ontological reasoning is used with a best-effort strategy. In order to
ensure the high efficiency required for real-time mobile computing services,
online rule-based reasoning is performed with a special purpose inference en-
gine, separately from ontological reasoning which is done with the RacerPro
reasoner. As in [35], ontological reasoning is also performed to check the con-
sistency of the context model.

7.3 Towards a hierarchical hybrid model: gains and open issues

We now illustrate how existing hybrid approaches may be further extended to
design a hierarchical hybrid context model that may satisfactorily address a
larger number of the identified prerequisites.

A preliminary proposal for a hierarchical model has been presented in [7]
focusing on the spatial/ontological component. The model presented here is
intended to provide a more comprehensive solution, both in terms of inte-
gration of different forms of reasoning, and in terms of expressiveness. The
proposed model includes a representation formalism to represent data directly
acquired from sensors (or retrieved from a module executing some sensor data
fusion technique). In order to support the scalability requirements of perva-
sive computing services, this representation formalism should make possible
the execution of efficient reasoning techniques to derive high-level context
data on the basis of raw ones (e.g., by executing rule-based reasoning in a
restricted logic programming language, or statistical inferencing). Since such
a representation formalism inevitably does not support a formal definition
of the semantics of context descriptions, a more expressive, ontology-based
context model is desirable on top of it. In addition to providing a formal se-
mantics of the data, an ontological context model also supports the execution
of reasoning tasks such as consistency checking and derivation of new context
information. Clearly, there must be a mapping between terms used in context
descriptions for efficient reasoning and ontological classes and relations. The
corresponding framework is shown in Figure 3; it is composed of the following

28

SENSOR DATA FUSION

VOCABULARY /
SCHEMA

LAYER 1

LAYER 2

LAYER 3

DATA
REPRESENTATION
AND MANAGEMENT

DATA
INTEGRATION

EFFICIENT
SHALLOW

REASONING

SENSORS

ONTOLOGICAL
REPRESENTATION
AND REASONING

APPLICATION
INTERFACE

APPLICATION

LOCATION
SERVER

GIS

...

Fig. 3. Multilayer framework

layers:

• Layer 1: Statistics-based techniques for sensor data fusion.
• Layer 2: This layer is devoted to shallow context data representation, inte-

gration with external sources, and efficient context reasoning. In particular,
it includes the following modules:
· module for efficient markup-based, RDF-based, or DB-based represen-

tation and management of context data. This includes the definition of
shared vocabularies (CC/PP vocabularies are an example for RDF-based
representation, and annotated DB schemas are an example for DB-based
management);

· modules for efficient shallow reasoning (logics and/or statistics-based, un-
certainty reasoning may be supported);

· data integration techniques for acquiring data from external sources (e.g.,
GIS, location servers, user modelling systems) and for conflict resolution
(even due to conflicting rules).

• Layer 3: Realization/abstraction process to apply ontological representation
and reasoning. This layer has the following main goals:
· to specify the semantics of context terms (important for sharing and in-

tegration);
· to check consistency;
· to provide an automatic procedure to classify sets of context data as more

abstract context situations.

The interface exposed to applications is provided at Layer 2. This is mainly
due to efficiency concerns and to the fact that ontological reasoning is mainly
based on relationships between concepts and not instances. Results of rea-
soning are reflected on instances at Layer 2 (this implies that markup/DB
schemas include, at least as strings, all the terms in the ontology). Applica-

29

tion developers have access to the ontology, that also provides the context
semantics. The specific context terms required by an application will be found
at Layer 2, and their values will be returned when required.

Even though the proposed hierarchical hybrid model determines clear advan-
tages in terms of the requirements reported in the introduction, we point out
that the integration of diverse reasoning techniques still poses open issues, e.g.,
how to integrate the open-world semantics of ontologies with the closed-world
semantics of DB-based models and logic programming (see [47] for a thorough
discussion of this aspect), and how to reconcile probabilistic reasoning with
reasoning with languages not supporting uncertainty (e.g., OWL-DL).

8 Conclusions

In this paper we described the state of the art in context modelling and rea-
soning that supports gathering, evaluation and dissemination of context infor-
mation in pervasive computing. Existing approaches to context information
modelling differ in the expressive power of the context information models,
in the support they can provide for reasoning about context information, and
in the computational performance of reasoning. In the paper we presented a
set of requirements that context modelling and reasoning techniques should
meet. The discussion of the requirements was followed by a description of the
three, currently most prominent, approaches to context modelling and rea-
soning. These approaches are rooted in database modelling techniques and in
ontology based frameworks for knowledge representation.

The paper also presented state-of-the-art techniques to deal with two partic-
ularly relevant issues that should be addressed in any framework for context
representation and reasoning: situation abstractions and uncertainty of con-
text information.

We concluded our survey by introducing hybrid approaches as an attempt
to combine different formalisms and techniques to better fulfill the identified
requirements. Since we believe this is a promising direction, we discussed a
possible architecture, as well as some research issues to be investigated.

References

[1] A. Agostini, C. Bettini, D. Riboni, Hybrid reasoning in the care middleware
for context-awareness, International Journal of Web Engineering and

30

Technology,To appear. (Extended and revised version of papers appeared in
proc. of MobiQuitous 2005 and CoMoRea 2007.).

[2] A. Agostini, C. Bettini, D. Riboni, Experience Report: Ontological Reasoning
for Context-aware Internet Services, in: Proceedings of the 4th IEEE Conference
on Pervasive Computing and Communications Workshops, IEEE Computer
Society, 2006.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-
Schneider (eds.), The Description Logic Handbook: Theory, Implementation,
and Applications, Cambridge University Press, 2003.

[4] J. Barwise, J. Perry, The Situation Underground., Stanford University Press,
1980.

[5] J. Barwise, J. Perry, Situations and Attitudes, The Journal of Philosophy
78 (11) (1981) 668–691.

[6] C. Becker, F. Dürr, On location models for ubiquitous computing, Personal and
Ubiquitous Computing 9 (1) (2005) 20–31.

[7] C. Becker, D. Nicklas, Where do spatial context-models end and where do
ontologies start? A proposal of a combined approach, in: J. Indulska, D. D.
Roure (eds.), Proceedings of the First International Workshop on Advanced
Context Modelling, Reasoning and Management, in conjunction with UbiComp
2004, Nottingham, England: University of Southhampton, 2004.

[8] C. Bettini, D. Maggiorini, D. Riboni, Distributed context monitoring for the
adaptation of continuous services, World Wide Web Journal 10 (4) (2007) 503–
528.

[9] C. Bettini, D. Riboni, Profile Aggregation and Policy Evaluation for Adaptive
Internet Services, in: Proceedings of The First Annual International Conference
on Mobile and Ubiquitous Systems: Networking and Services (Mobiquitous),
IEEE Computer Society, 2004.

[10] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, H. Stuckenschmidt,
Contextualizing Ontologies, Journal of Web Semantics 1 (4) (2004) 325–343.

[11] O. Brdiczka, J. Crowley, P. Reignier, Learning Situation Models for Providing
Context-Aware Services, Lecture Notes In Computer Science 4555 (2007) 23.

[12] P. Castro, P. Chiu, T. Kremenek, R. R. Muntz, A probabilistic room location
service for wireless networked environments, in: UbiComp ’01: Proceedings of
the 3rd international conference on Ubiquitous Computing, Springer-Verlag,
London, UK, 2001.

[13] T. Chaari, E. Dejene, F. Laforest, V.-M. Scuturici, A Comprehensive
Approach to Model and Use Context for Adapting Applications in Pervasive
Environments, International Journal of Systems and software 80 (12) (2007)
1973–1992.

31

[14] H. Chen, T. Finin, A. Joshi, Semantic Web in the Context Broker Architecture,
in: Proceedings of the Second IEEE International Conference on Pervasive
Computing and Communications (PerCom 2004), IEEE Computer Society,
2004.

[15] H. Chen, F. Perich, T. W. Finin, A. Joshi, SOUPA: Standard Ontology for
Ubiquitous and Pervasive Applications, in: 1st Annual International Conference
on Mobile and Ubiquitous Systems (MobiQuitous 2004), IEEE Computer
Society, 2004.

[16] B. Clarkson, Life patterns: structure from wearable sensors, Ph.D. thesis,
Massachusetts Institute of Technology (2003).

[17] J. Crowley, J. Coutaz, G. Rey, P. Reignier, Perceptual Components for Context
Aware Computing, UbiComp 2002: Ubiquitous Computing: 4th International
Conference, Göteborg, Sweden, September 29-October 1, 2002: Proceedings.

[18] W. Dargie, The role of probabilistic schemes in multisensor context-awareness,
in: Proceedings of the 5th IEEE Conference on Pervasive Computing and
Communications Workshops, 2007.

[19] A. Dey, Understanding and Using Context, Personal and Ubiquitous Computing
5 (1) (2001) 4–7.

[20] A. Dey, J. Manko, G. Abowd, Distributed mediation of imperfectly sensed
context in aware environments, Tech. rep. (2000).

[21] Z. Ding, Y. Peng, A Probabilistic Extension to Ontology Language OWL, in:
Proceedings of the 37th Annual Hawaii International Conference on System
Sciences, IEEE Computer Society, 2004.

[22] S. Dobson, J. Ye, Using fibrations for situation identification, Pervasive 2006
workshop proceedings (2006) 645–651.

[23] R. Fagin, J. Y. Halpern, N. Megiddo, A logic for reasoning about probabilities,
Inf. Comput. 87 (1-2) (1990) 78–128.

[24] A. Frank, Tiers of ontology and consistency constraints in geographical
information systems, International Journal of Geographical Information Science
15 (7) (2001) 667–678.

[25] F. Gandon, N. M. Sadeh, A Semantic E-Wallet to Reconcile Privacy and
Context Awareness, in: Proceedings of ISWC 2003, Second International
Semantic Web Conference, Springer, 2003.

[26] P. D. Gray, D. Salber, Modelling and using sensed context information in the
design of interactive applications, in: EHCI ’01: Proceedings of the 8th IFIP
International Conference on Engineering for Human-Computer Interaction,
Springer-Verlag, London, UK, 2001.

[27] M. Grossmann, M. Bauer, N. Honle, U. Kappeler, D. Nicklas, T. Schwarz,
Efficiently Managing Context Information for Large-Scale Scenarios, Pervasive
Computing and Communications, 2005. PerCom 2005. Third IEEE
International Conference (2005) 331–340.

32

[28] T. Gu, X. H. Wang, H. K. Pung, D. Q. Zhang, An ontology-based context
model in intelligent environments, in: Proceedings of Communication Networks
and Distributed Systems Modeling and Simulation Conference, San Diego,
California, USA, 2004.

[29] T. A. Halpin, Conceptual Schema and Relational Database Design, 2nd ed.,
Prentice Hall Australia, Sydney, 1995.

[30] T. A. Halpin, Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design, Morgan Kaufman, San Francisco, 2001.

[31] K. Henricksen, A framework for context-aware pervasive computing
applications, Ph.D. thesis, School of Information Technology and Electrical
Engineering, The University of Queensland (September 2003).

[32] K. Henricksen, J. Indulska, Modelling and using imperfect context information,
in: 1st Workshop on Context Modeling and Reasoning (CoMoRea), PerCom’04
Workshop Proceedings, IEEE Computer Society, 2004.

[33] K. Henricksen, J. Indulska, Developing context-aware pervasive computing
applications: Models and approach, Pervasive and Mobile Computing 2 (1)
(2006) 37–64.

[34] K. Henricksen, J. Indulska, A. Rakotonirainy, Modeling context information
in pervasive computing systems, in: 1st International Conference on Pervasive
Computing (Pervasive), vol. 2414 of Lecture Notes in Computer Science,
Springer, 2002.

[35] K. Henricksen, S. Livingstone, J. Indulska, Towards a Hybrid Approach to
Context Modelling, Reasoning and Interoperation, in: J. Indulska, D. D. Roure
(eds.), Proceedings of the First International Workshop on Advanced Context
Modelling, Reasoning And Management, in conjunction with UbiComp 2004,
Nottingham, England: University of Southhampton, 2004.

[36] I. Horrocks, L. Li, D. Turi, S. Bechhofer, The Instance Store: DL Reasoning
with Large Numbers of Individuals, in: Proceedings of the 2004 International
Workshop on Description Logics (DL2004), vol. 104 of CEUR Workshop
Proceedings, CEUR-WS.org, 2004.

[37] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean,
SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3c
member submission, W3C (May 2004).
URL http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

[38] I. Horrocks, P. F. Patel-Schneider, F. van Harmelen, From SHIQ and RDF to
OWL: The making of a web ontology language, Journal of Web Semantics 1 (1)
(2003) 7–26.

[39] J. Indulska, R. Robinson, A. Rakotonirainy, K. Henricksen, Experiences in using
cc/pp in context-aware systems, in: M.-S. Chen, P. K. Chrysanthis, M. Sloman,
A. B. Zaslavsky (eds.), Mobile Data Management, vol. 2574 of Lecture Notes
in Computer Science, Springer, 2003.

33

[40] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M. H. Butler,
L. Tran, Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies
1.0, W3C Recommendation, W3C, http://www.w3.org/TR/2004/REC-CCPP-
struct-vocab-20040115/ (January 2004).

[41] H. Lei, D. M. Sow, I. John S. Davis, G. Banavar, M. R. Ebling, The design and
applications of a context service, SIGMOBILE Mob. Comput. Commun. Rev.
6 (4) (2002) 45–55.

[42] A. Leonhardi, U. Kubach, K. Rothermel, A. Fritz, Virtual information
towers-a metaphor for intuitive, location-awareinformation access in a mobile
environment, Wearable Computers, 1999. Digest of Papers. The Third
International Symposium on (1999) 15–20.

[43] L. Liao, D. J. Patterson, D. Fox, H. Kautz, Learning and inferring
transportation routines, Artif. Intell. 171 (5-6) (2007) 311–331.

[44] S. Loke, On representing situations for context-aware pervasive computing: six
ways to tell if you are in a meeting, Pervasive Computing and Communications
Workshops, 2006. PerCom Workshops 2006. Fourth Annual IEEE International
Conference on (2006) 35–39.

[45] L. McCowan, D. Gatica-Perez, S. Bengio, G. Lathoud, M. Barnard, D. Zhang,
Automatic analysis of multimodal group actions in meetings, IEEE Transactions
on Pattern Analysis and Machine Intelligence 27 (3) (2005) 305–317.

[46] I. Millard, D. De Roure, N. Shadbolt, The use of ontologies in contextually aware
environments, In Proceedings of First International Workshop on Advanced
Context (2004) 42–47.

[47] B. Motik, I. Horrocks, R. Rosati, U. Sattler, Can OWL and Logic Programming
Live Together Happily Ever After?, in: Proceedings of the 5th International
Semantic Web Conference (ISWC 2006), vol. 4273 of Lecture Notes in Computer
Science, Springer, 2006.

[48] M. Muehlenbrock, O. Brdiczka, D. Snowdon, J. Meunier, Learning to detect user
activity and availability from a variety of sensor data, Pervasive Computing and
Communications, 2004. PerCom 2004. Proceedings of the Second IEEE Annual
Conference on (2004) 13–22.

[49] D. Nicklas, M. Grossmann, J. Mnguez, M. Wieland, Adding High-level
Reasoning to Efficient Low-level Context Management: a Hybrid Approach,
Pervasive Computing and Communications Workshops, 2008. Proceedings of
the Sixth IEEE Annual Conference (2004) 18–22.

[50] D. Nicklas, B. Mitschang, The Nexus Augmented World Model: An extensible
approach for mobile, spatially aware applications, 7th International Conference
on Object-Oriented Information Systems.

[51] J. Pascoe, The stick-e note architecture: extending the interface beyond the user,
Proceedings of the 2nd international conference on Intelligent user interfaces
(1997) 261–264.

34

[52] D. Randell, A. Cohn, Modelling topological and metrical properties of physical
processes, Proceedings 1st International Conference on the Principles of
Knowledge Representation and Reasoning, Morgan Kaufmann, Los Altos (1989)
55–66.

[53] A. Ranganathan, J. Al-Muhtadi, R. H. Campbell, Reasoning about uncertain
contexts in pervasive computing environments, IEEE Pervasive Computing 3 (2)
(2004) 62–70.

[54] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, M. D. Mickunas,
Middlewhere: a middleware for location awareness in ubiquitous computing
applications, in: Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware, Springer-Verlag New York, Inc., New
York, NY, USA, 2004.

[55] A. Ranganathan, R. H. Campbell, An infrastructure for context-awareness
based on first order logic, Personal and Ubiquitous Computing 7 (2003) 353–
364.

[56] A. Ranganathan, R. E. Mcgrath, R. H. Campbell, M. D. Mickunas, Use of
Ontologies in a Pervasive Computing Environment, The Knowledge Engineering
Review 18 (3) (2004) 209–220.

[57] P. Reignier, O. Brdiczka, D. Vaufreydaz, J. Crowley, J. Maisonnasse, Context-
aware environments: from specification to implementation, Expert Systems
24 (5) (2007) 305–320.

[58] R. Reiter, Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems, MIT Press, 2001.

[59] G. Rey, Contexte en Interaction Homme-Machine: le contexteur, Ph.D. thesis,
Thèse de doctorat Informatique (IMAG), Université Joseph Fourier. 1er aout
2005 (2005).

[60] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
K. Nahrstedt, A middleware infrastructure for active spaces, IEEE Pervasive
Computing 01 (4) (2002) 74–83.

[61] B. Schilit, N. Adams, R. Want, et al., Context-aware Computing Applications,
Xerox Corp., Palo Alto Research Center, 1994.

[62] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven, W. V.
de Velde, Advanced interaction in context, in: HUC ’99: Proceedings of the 1st
international symposium on Handheld and Ubiquitous Computing, Springer-
Verlag, London, UK, 1999.

[63] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press,
NJ, 1976.

[64] U. Straccia, Towards a Fuzzy Description Logic for the Semantic Web
(Preliminary Report), in: Proceedings of the Second European Semantic Web
Conference (ESWC 2005), vol. 3532 of Lecture Notes in Computer Science,
Springer, 2005.

35

[65] T. Strang, C. Linnhoff-Popien, A Context Modeling Survey, in: J. Indulska,
D. D. Roure (eds.), Proceedings of the First International Workshop on
Advanced Context Modelling, Reasoning And Management, in conjunction with
UbiComp 2004, University of Southhampton, 2004.

[66] T. Strang, C. Linnhoff-Popien, K. Frank, CoOL: A Context Ontology Language
to Enable Contextual Interoperability, in: Proceedings of the International
Conference on Distributed Applications and Interoperable Systems (DAIS
2003), vol. 2893 of Lecture Notes in Computer Science, Springer, 2003.

[67] X. H. Wang, T. Gu, D. Q. Zhang, H. K. Pung, Ontology Based Context
Modeling and Reasoning using OWL, in: Proceedings of Second IEEE Annual
Conference on Pervasive Computing and Communications Workshops, IEEE
Computer Society, 2004.

[68] H. Wu, Sensor data fusion for context-aware computing using dempster-shafer
theory, Ph.D. thesis, Pittsburgh, PA, USA, chair-Mel W. Siegel (2004).

[69] J. Ye, L. Coyle, S. Dobson, P. Nixon, Using Situation Lattices to Model
and Reason about Context?, Fourth International Workshop on Modeling and
Reasoning in Context (MRC 2007)., August.

[70] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst.
100 (1999) 9–34.

[71] D. Zhang, T. Gu, X. Wang, Enabling Context-aware Smart Home with Semantic
Technology, International Journal of Human-friendly Welfare Robotic Systems
6 (4) (2005) 12–20.

36

