
The Knowledge Engineering Review, Vol. 18:3, 197–207. 2004, Cambridge University Press
DOI: 10.1017/S0269888904000025Printed in the United Kingdom

An ontology for context-aware pervasive
computing environments*

H A R R Y C H E N , T I M F I N I N and A N U P A M J O S H I
Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, USA;
e-mail: hchen4@cs.umbc.edu, finin@cs.umbc.edu, joshi@cs.umbc.edu

Abstract

This document describes COBRA-ONT, an ontology for supporting pervasive context-aware
systems. COBRA-ONT, expressed in the Web Ontology Language OWL, is a collection of
ontologies for describing places, agents and events and their associated properties in an intelligent
meeting-room domain. This ontology is developed as a part of the Context Broker Architecture
(CoBrA), a broker-centric agent architecture that provides knowledge sharing, context reasoning
and privacy protection supports for pervasive context-aware systems. We also describe an inference
engine for reasoning with information expressed using the COBRA-ONT ontology and the ongoing
research in using the DAML-Time ontology for context reasoning.

1 Introduction

Computing is moving towards pervasive, ubiquitous environments in which devices, software
agents and services are all expected to seamlessly integrate and cooperate in support of human
objectives – anticipating needs, negotiating for service, acting on our behalf and delivering services
in an anywhere, any time fashion (Finin et al., 2001). An important next step for pervasive
computing is the integration of intelligent agents that employ knowledge and reasoning to
understand the local context and share this information in support of intelligent applications and
interfaces. We are developing a new architecture called Context Broker Architecture (CoBrA) to
support context-aware systems in smart spaces (e.g. intelligent meeting rooms, smart homes and
smart vehicles).

Context-aware systems are computer systems that can provide relevant services and information
to users by exploiting context (Chen & Kotz, 2000).By context, we mean information about a
location, its environmental attributes (e.g. noise level, light intensity, temperature and motion) and
the people, devices, objects and software agents it contains. Context may also include system
capabilities, services offered and sought, the activities and tasks in which people and computing
entities are engaged, and their situational roles, beliefs, and intentions.

We believe ontologies are key requirements for building context-aware systems for the following
reasons: (i) a common ontology enables knowledge sharing in open and dynamic distributed
systems (Peters & Shrobe, 2003), (ii) ontologies with well-defined declarative semantics provide a
means for intelligent agents to reason about contextual information and (iii) explicitly represented
ontologies allow devices and agents not expressly designed to work together to interoperate,
achieving ‘‘serendipitous interoperability’’ (Heflin, 2003).

*This work was partially supported by DARPA contract F30602-97-1-0215, NSF award 9875433,NSF
award 0209001,and Hewlett Packard.

In CoBrA we have defined a collection of ontologies called COBRA-ONT for modelling the
context in an intelligent meeting-room environment. COBRA-ONT expressed in the Web Ontology
Language OWL (Bechhofer et al., 2003)defines typical concepts associated with places, agents, and
events. To reason over knowledge that is described in COBRA-ONT and the OWL language, we
have prototyped F-OWL, an ontology inference engine, using the Flora-2 system (Yang & Kifer,
2002) in XSB (Sagonas et al., 2003).

The rest of this document is organised as follows: in the next section we discuss the shortcomings
of the previous pervasive context-aware systems that do not make explicit representation of context.
An overview of the CoBrA system is given in Section 3. In Section 4 we present COBRA-ONT and
its associated use cases. An overview of the F-OWL inference engine is described in Section 5.
Future work and conclusions are given in Sections 6 and 7 respectively.

2 Shortcomings of the previous systems

A number of computing systems developed in the past aim to support pervasive computing (e.g. the
Intelligent Room (Coen, 1997; Coen et al., 1999),Cooltown (Kindberg & Barton, 2001), and
Context Toolkit (Salber et al., 1999).While these systems have made progress in various aspects of
pervasive computing, they offer only weak support for knowledge sharing and context reasoning.
A significant source of this weakness is that they are not built on a foundation of common
ontologies with explicit semantic representation (Chen et al., 2001a). For example, in previous
systems (Brumitt et al., 2000;Coen, 1998;Want et al., 1992),user location information is widely
used for guiding the adaptive behaviour of the systems. However, none have taken advantage of the
semantics of spatial relations in reasoning about context (i.e. information that describes the whole
physical space that surrounds a particular location and its relationship with other locations).

Furthermore, previous systems often implemented context as simple programming language
objects (e.g. Java class objects) or informally described in documentation. Because these represen-
tations require the establishment of a prior low-level implementation agreement between the
programs that wish to share information, they cannot facilitate knowledge sharing in an open and
dynamic environment. In order to facilitate the sharing of contextual knowledge, we believe
ontologies of context-related information must be defined in order to provide a set of common
vocabularies with shared semantics.

3 Context broker architecture

CoBrA is a broker-centric agent architecture for supporting context-aware systems in smart spaces.
Central to our architecture is the presence of an intelligent agent called the context broker. The
context broker is a specialized server entity that runs on a resource-rich stationary computer in the
space (e.g. on a Mocha PC1). In a smart space, the context broker’s role is to maintain a shared
model of context on behalf of a community of agents and devices in the space and to protect the
privacy of users by enforcing the user-defined policies when sharing information with agents in the
associated space.

Figure 1 shows the high-level design of the broker and its relationship with other agents in a
smart space. All computing entities in a smart space are presumed to have prior knowledge about
the presence of a context broker, and the high-level agents are presumed to communicate with the
broker using the standard FIPA Agent Communication Language (FIPA, 2002).The design of the
context broker comprises the following four functional components: (i) Context Knowledge Base:
a persistent storage of the context knowledge, (ii) Context Reasoning Engine: a reactive inference
engine that reasons over the stored context knowledge, (iii) Context Acquisition Module: a library
of procedures that form a middle-ware abstraction for context acquisition, (iv) Policy Management
Module: a set of inference rules that deduce instructions for deciding the right permissions for

1 http://www.cappuccinopc.com/mochap4.asp.

198 .

different computing entities to share a particular piece of contextual information and for selecting
the recipients to receive notifications of context changes.

Our centralised broker design addresses two important issues that are key to realising the
potential of pervasive computing: supporting resource-limited mobile computing devices and
addressing the concerns for user privacy. With the introduction of a context broker that operates on
a stationary computer, the burdens of acquiring, and reasoning over, contextual information
is shifted away from the resource-limited mobile devices to the resource-rich broker; the
complications inherent in establishing, monitoring and enforcing security, trust and privacy policies
are simplified in the presence of a centralised manager.

Although the existence of a context broker brings about advantages, the centralised design of a
broker could create a ‘‘bottleneck’’ situation in a large-scale intelligent space such as a building or
a university campus, hindering overall system performance. To address this problem, we propose a
fault-tolerance approach, based on the persistent broker team design described by Kumar et al.
(2000). In our design, multiple brokers are grouped together to form a broker federation. Each
broker in the federation is responsible for managing a part of the intelligent space (e.g. a particular
room in a building). In a federation, brokers are organised according to some communication
structure (e.g. peer-to-peer or hierarchical), and they periodically exchange and synchronise contex-
tual knowledge. A key advantage of this approach is that the access to a shared model of context is
no longer solely dependant on the availability of a single broker, and members of a broker federation
share the repressibility of other members to provide access to the shared model of context.

4 An overview of COBRA-ONT

Ontologies play an important role in CoBrA, helping the context broker to share contextual
knowledge with other agents and enabling it to reason about context. COBRA-ONT is a collection

Figure 1 An intelligent context broker acquires context information from devices, agents and sensors in its
environment and fuses it into a coherent model, which is then shared with the devices and their agents

An ontology for context-aware pervasive computing environments 199

of ontologies expressed in the Web Ontology Language OWL for describing information in an
intelligent meeting-room environment.

The Web Ontology Language OWL, which is similar to the other Semantic Web languages such
RDF (Lassila & Swick, 1999), RDFS (Brickley & Miller, 2003), and DAML+OIL (Connolly
et al., 2001), is a language for publishing and sharing ontologies. We have chosen the OWL
language to model context ontologies for the following reasons:

• OWL is much more expressive than RDF or RDFS, allowing us to build more knowledge into
the ontology. For example, cardinality constraints can be imposed on the properties of an OWL
class. In defining the location property of a person class, cardinality constraints can be used to
restrict the number of physical locations that a person can possibly be in at a given time instant
(e.g. restricting the maximum cardinality to one means only one physical location instance is
allowed to be associated with the location property of a person).

• OWL was expressly designed as an ‘‘ontology language’’ and has many predefined classes
and properties useful for expressing information about ontologies. For example, an ontology
can import other ontologies, committing to all of their classes, properties and constraints.
There are properties for asserting or denying the equivalence of individuals and classes,
providing a way to relate information expressed in one ontology to another. These
features, along with many others, are important for supporting ontology reuse, mapping and
interoperability.

• OWL has been designed as a standard and has the backing of a well-known and regarded
standard organisation (i.e. W3C). For this reason, there is a wide variety of development
tools available for integrating the OWL ontologies into the development of our software
applications.

4.1 COBRA-ONT use cases

The development of COBRA-ONT focuses on creating ontologies that are suitable for
building pragmatic context-aware systems. Some typical use cases of COBRA-ONT are the
following:

• A sensor agent detects the presence of a Bluetooth-enabled cellphone in Room 210.It composes
a description of this sensed event using COBRA-ONT, which then is sent to the context broker
in the associated space. Without having any evidence to the contrary, the broker asserts that the
owner of the device is also in present in Room 210. Based on a physical location ontology
predefined in COBRA-ONT, knowing Room 210 is a part of the Computer Science Building
which in turn is a part of the UMBC campus, the context broker concludes the device owner is
in school today.

• After a speaker enters the meeting room, her mobile device sends the context broker her
predefined user policy, which describes the privacy rules that the broker should enforce while she
is attending the meeting. Knowing the user does not want to reveal her home address to services
at the meeting, based on a privacy protection ontology predefined in COBRA-ONT, the broker
reasons that it should keep secret her home phone number also since it is relatively easy to
determine an address given a telephone number.

• After a talk given by a distinguished professor, a student from the audience takes a few pictures
of the speaker. Before his digital camera sends the pictures to the photo album agent at home, it
checks with the broker to ensure that there are no prohibitions on publishing photographs of the
event, acquires the location and event information from the context broker and embeds that
information into the pictures’ meta-data. Upon receiving the pictures, based on the shared
location and event ontologies, the photo album agent reasons about the context in which the
pictures are taken and automatically archives them into the appropriate albums in his photo
library.

200 .

4.2 Key concepts in COBRA-ONT

We describe version 0.2 of the COBRA-ONT ontology.2 Figure 2 shows a complete list of the
classes and properties in COBRA-ONT, which consists of 41 classes (i.e. RDF resources that are
of the owl:class type) and 36 properties (i.e. RDF resources that are of either the owl:
ObjectProperty or the owl:DatatypeProperty type).

Our ontology is categorised into four distinctive but related themes: (i) ontologies about physical
places, (ii) ontologies about agents (both human and software agents), (iii) ontologies about the
location context of the agents and (iv) ontologies about the activity context of the agents.

4.2.1 Ontologies about places
A top-level class in COBRA-ONT is Place, which represents the abstraction of a physical
location. It has a set of properties that are typically used to describe a location (e.g. longitude,
latitude and string name). COBRA-ONT defines two special subclasses called AtomicPlace and
CompoundPlace to represent two different classes of physical location that have distinctive
containment properties (see Figure 3). The containment property of a physical location is defined
as its model for being capable of spatially subsuming other physical locations. For example, in our
ontology, a campus spatially subsumes all buildings on the campus, and a building spatially
subsumes all rooms that are in it.

The containment property in COBRA-ONT is represented by the spatiallySubsumes and
isSpatiallySubsumedBy class properties. These two class properties are defined as the inverse
property of each other (i.e., if X spatially subsumes Y, then Y is spatially subsumed by X).

For the AtomicPlace class and its subclasses, the cardinality of their spatiallySubsumes
property is restricted to zero, and the range of their isSpatiallySubsumedBy property is

2 A complete version of the ontology is available at http://daml.umbc.edu/ontologies/cobra/
0.2/cobra-ont. Future versions of the ontology can be accessed through http://cobra.umbc.edu.

Figure 2 A complete list of the classes and properties in COBRA-ONT v0.2

An ontology for context-aware pervasive computing environments 201

CompoundPlace. The function of these constraints is to express the idea that all individuals of the
type AtomicPlace do not spatially subsume other physical locations, and they can be spatially
subsumed by individuals of the type CompoundPlace.

Like the AtomicPlace class, the CompoundPlace class is also defined with special constraints
on its containment properties. For this class and its subclasses, the range of the spatiallySub-
sumes is Place, and the range of the isSpatiallySubsumedBy property is CompoundPlace.
The function of these constraints is to express the idea that all individuals of the type
CompoundPlace can spatially subsume other individuals of the type either AtomicPlace or
CompoundPlace, and they can be spatially subsumed by other CompoundPlace individuals.

In our ontology, predefined subclasses of AtomicPlace are Room, Hallway, Stairway,
Restroom and ParkingLot, and predefined subclasses of CompoundPlace are Campus and
Building. Note that some of the AtomicPlace subclasses could have been modelled as
subclasses of CompoundPlace (e.g. Room can be thought as a compound place that spatially
subsumes four corners of a room). The choice that we have made in categorising these ontological
concepts is purely based on the type of context-aware applications that we need to support in
prototyping CoBrA. It may be necessary to reorganise the class hierarchy if the ontology is reused
to support a different context-aware application.

To help describe a place hosting an event (e.g. a meeting), we define the hasEvent property.
This property has domain Place and range Event. Instances of the Event class are associated
with time intervals.

4.2.2 Ontologies about agents
The top-level agent class in COBRA-ONT is Agent. This class has two predefined subclasses,
namely Person and SoftwareAgent. The former represents the class of all human agents, and
the latter represents the class of all software agents. These two classes are defined to be disjoint. We
have defined a number of properties for describing the profile of an agent (e.g. names, homepages
and e-mail addresses). Each agent in our ontology can have associated roles in an event (e.g. during
a presentation event, the role of a person is a speaker, and after the presentation event, the role
of the same person changes to a meeting participant). The role of an agent is defined by the

Figure 3 Partial definitions of the AtomicPlace and CompoundPlace classes

202 .

fillsRole property, which has range Role. For convenience, we predefined two subclasses of
Role, SpeakerRole and AudienceRole. They represent different roles of a human agent in
a meeting.

In our ontology, the role of an agent can be used to characterise the intention of the agent.
This allows the system to reason about the possible actions that a user intends to take after knowing
the role of the user. To describe a user’s intended action, we have defined the property
intendsToPerform for the Role class. The range of this property is IntentionalAction.

Sometimes an agent may desire other agents to achieve certain objectives on its behalf. For
example, a speaker may desire services to set up the presentation slides before the meeting starts.
To define what actions an agent desires other agents to take, we define a property called
desiresSomeoneToAchieve. The range of this property is IntentionalAction.3

4.2.3 Ontologies about an agent’s location context
By location context, we mean a collection of dynamic knowledge that describes the location of an
agent. The location property of an agent is represented by the property locatedIn. As the
physical locations are categorised into AtomicPlace and CompoundPlace, it is possible to
define the following context reasoning:

1. No agent can be physically present in two different atomic places during the same time interval.
2. An agent can be physically present in two different compound places during the same time

interval just in case one spatially subsumes the other.

This type of reasoning is important because they can help the broker to detect inconsistent
knowledge about the current location of an agent. For example, if two different sensor agents report
a person is currently located in Parking Lot A and is located in Room 210,then based on the first

3 The semantic of an action is not formally defined in v0.2of the ontology. At present all action instances are
assumed to be atomic actions.

Figure 4 Partial definitions of the classes’ related roles, intentions and desires

An ontology for context-aware pervasive computing environments 203

rule, the broker can conclude the information about the person’s location is inconsistent because
both instances that represent Parking Lot A and Room 210 are types of atomic place.

To describe an agent is physically present in an atomic or a compound place, from the
locatedIn property we define two sub-properties called locatedInAtomicPlace and
locatedInCompoundPlace. The former is defined with the range restricted to Atomic-
Place, and the latter is defined with the range restricted to CompoundPlace. From these two
properties, we define additional properties that further restrict the type of the physical place that
an agent can have physical presence in. For example, locatedInRoom, locatedInRest-
room and locatedInParkingLot are sub-properties of locatedInAtomicPlace;
locatedInCampus and locatedInBuiding are sub-properties of locatedInCompound-
Place.

For agents that are located in different places, we can categorise them according to their location
properties. For example, we define PersonInBuilding to represent a set of all people who are
located in a building, and SoftwareAgentInBuilding to represent a set of all software agents
that are located in a building. The complements of these classes are PersonNotInBuilding and
SoftwareAgentNotInBuilding.

4.3 Ontologies about an agent’s activity context

The activity context of an agent, similar to the location context, is a collection of dynamic
knowledge that describes the events in which an agent participates. Events are assumed to have
schedules. In our ontology, the class PresentationSchedule represents the schedule of a
presentation event. This class has associated properties that describe the start time, the end time, the
presentation title, the presentation abstract and the location of a presentation event. Additionally,
in COBRA-ONT we also provide a set of constructs for describing the audiences and speakers of
a presentation event. We assume in each presentation that there is at least one invited speaker and
one or many audiences. To describe a presentation that has a speaker or an audience, one can use
the property invitedSpeaker and expectedAudience. Both of these properties have domain
PresentationSchedule and range Person.

To describe an event that is currently happening, we define a class called Presentation-
EventHappeningNow. The individuals of this class are assumed to have implicit association with
the temporal predicate ‘‘now’’.

Sometimes it is useful to reason about the temporal property of the people and places that are
associated a presentation event. For example, the broker might want to reason who is currently
participating in a meeting, or what room is currently hosting a meeting. To support this type of
reasoning, we defined the class RoomHasPresentationEventHappeningNow to represent the
rooms that are currently hosting meetings, the class SpeakerOfPresentationHappeningNow
to represent the speakers of the presentations that are currently happening, and the class
AudienceOfPresentationHappeningNow to represent the audiences of the presentations that
are currently happening.

5 An OWL inference engine in Flora-2

In order to support ontology reasoning in CoBrA, we have prototyped an OWL inference engine
called F-OWL. This inference engine is implemented using Flora-2, an object-oriented knowledge
base language and application development platform that translates a unified language of F-logic,
HiLog, and Transaction Logic into the XSB deductive engine (Yang & Kifer, 2002).Key features
of F-OWL include the ability to reason with the ontology model defined by the latest standard
OWL language recommended by W3C, the ability to support knowledge consistency checking
using axiomatic rules defined in Flora-2, and an open application programming interface (API) for
Java application integrations.

204 .

The use of an object-oriented rule-based language (i.e. Flora-2) in an advanced Prolog logic
programming system (i.e. XSB) differentiates the implementation of F-OWL from other ontology
inference engines such as JTP (Fikes et al., 2003), RACER (Haarslev & Möller, 2001) and
DAMLJessKB (Kopena & Regli, 2003). First, F-OWL exploits a special rule evaluation
mechanism called tabling, provided by the underlying XSB system. This mechanism implements
result caching in the backward-chaining reasoning, which is beyond the capability of a traditional
Prolog system. As ontology reasoning often involves repetitive evaluation of some closed-world
domain knowledge, the tabling mechanism can help to avoid repetitive ontology inference
calculations, improving the overall system performance. Second, in contrast to the use of
conventional logic languages in other ontology inference engines (e.g. KIF in JTP and CLIPS in
DAMLJessKB), F-OWL adopts an object-oriented language (Flora-2) that has closer language
constructs to the OWL language (e.g. both Flora-2 and OWL support the representations of
classes, properties, restrictions and instances). Third, building F-OWL on an advanced logic
programming system creates opportunities for applications to be integrated into and interoperate
with other intelligent systems (e.g. integrating an existing planning system to exploit knowledge
inferred from an existing ontology model).

F-OWL is a rule-driven logic inference engine, which consists of the following four components:
(i) assertions for the triple representation of the RDF and RDFS data models, (ii) assertions for
the triple representation of the OWL data model, (iii) rules for reasoning with the RDF and RDFS
data model and (iv) rules for reasoning with the OWL data model. The latest version (v0.3)4 of
F-OWL supports the ontology reasoning over the RDFS and the OWL-Lite sub-language
constructs.

To use F-OWL in context reasoning, the implementation of the context broker will provide
additional rules to reason over the domain-specific knowledge. Rules of this type are the rules for
detecting and resolving knowledge inconsistency and the rules for interpreting sensing inputs. In
our prototype implementation, we have developed rules that reason about the location of a person
in UMBC and the roles that are associated with different participants in a scheduled meeting.

6 Future work

An important next step of our work is to revise COBRA-ONT to use, if possible, or at least to map
to, if feasible, the emerging consensus ontologies that are relevant to the development of smart
spaces. These include the ontology for describing people on the Web (e.g. the Friends-Of-A-Friend
Vocabulary Specification (Brickley & Miller, 2003)), the ontology for describing time (e.g. the
DAML-Time ontology) and space (e.g. the Relation Connection Calculus (Randell et al., 1992)
and the DAML-Space ontology), and the ontology for describing talks (e.g. the ITTalks ontology
(Cost et al., 2002)).

Modelling time is important in CoBrA. We currently have an implicit representation of time and
temporal relations. In the next version, we plan on using the DAML-Time ontology, which is an
ontology for expressing temporal aspects of the contents of web resources and for expressing
time-related properties of web services (unpublished, ‘‘A DAML ontology of time’’, November
2002). In DAML-Time, interval algebra is used to define temporal relationship axioms (after,
before, inside, time-between, proper-interval etc.) and representations for clock and calendar units
(i.e. year, month, day of week etc.).

We plan to use this ontology to model the temporal relations of different events in an intelligent
meeting room. We will also develop rules that implement interval algebra to reason over the
temporal relations of the described events. For example, using the at-time(e,t) and inside-
(t,T) predicates in the interval algebra, we can create rules to determine if a person is attending
a meeting at a given time interval. In this example, lower-case e represents an event instance,
lower-case t represents a time instance and upper-case T represents a time interval. In an intelligent

4 http://umbc.edu/;hchen4/fowl.

An ontology for context-aware pervasive computing environments 205

meeting room, sensors periodically report the presence of a person to the broker and describe
this information using the at-time predicate – e.g. at 1:05p.m. they report at-
time(located(harry,room201)), t_instant(01:05PM0))

Knowing there is a meeting scheduled in the Room 201 during the time interval 1:00p.m.–
2:00p.m., using the inside(t,T) axiom (see Figure 5), the broker concludes that Harry is
located in Room 201 during the meeting. Not knowing any evidence to the contrary, the broker
may also conclude that Harry is attending the meeting.

7 Conclusion

Ontologies are key requirements for building pervasive context-aware systems, in which
independently developed sensors, devices and agents are expected to share contextual knowledge
and to provide relevant services and information to users based on their situational needs. We have
described COBRA-ONT, an ontology that we have developed for the Context Broker Architecture.

Our work shows that the newly emerged Web Ontology Language OWL is suitable for building
a common knowledge representation for context-aware systems to share and reason with
contextual knowledge. However, we also realise that a major shortcoming of our current design is
in the inability to reuse other consensus ontologies. The disadvantages of building a complete
ontology from scratch are the following: (i) it potentially requires a larger overhead in the ontology
design and engineering and (ii) it could decrease the interoperability between independently
developed ontologies.

As part of our long-term research plan, we are prototyping an intelligent meeting room called
EasyMeeting to demonstrate the feasibility of our Context Broker Architecture. Our goal is to
deploy a pervasive context-aware meeting room in the newly constructed Information Technology
and Engineering Building on the UMBC main campus.

References

Bechhofer, S, van Harmelen, F, Hendler, J, Horrocks, McGuinness, DL, Patel-Schneider, PF and Stein, LA,
2003,‘‘OWL web ontology language reference’’ available at http://www.w3.org/TR/owl-ref/.

Brickley, D and Miller, L, 2003, ‘‘FOAF vocabulary specification Revision 1.47− available at http://
xmlns.com/foaf/0.1/.

Brumitt, B, Meyers, B, Krumm, J, Kern, A and Shafer, SA, 2000,‘‘EasyLiving: technologies for intelligent
environments’’ Proceedings of Second International Symposium on Handheld and Ubiquitous Computing
12–29.

Chen, GL and Kotz, D, 2000, ‘‘A survey of context-aware mobile computing research’’ available at
http://citeseer.nj.nec.com/chen00survey.html.

Coen, M, Phillips, B, Warshawsky, N, Weisman, L, Peters, S and Finin, P, 1999,‘‘Meeting the computational
needs of intelligent environments: the metaglue system’’ Proceedings of 1st International Workshop on
Managing Interactions in Smart Environments (MANSE’99) available at http://citeseer.
nj.nec.com/coen99meeting.html.

Coen, MH, 1997, ‘‘Building brains for rooms: designing distributed software agents’’ Proceedings of Ninth
Conference on Innovative Applications of Artificial Intelligence 971–977.

Coen, MH, 1998,‘‘Design principles for intelligent environments’’ Proceedings of AAAI/IAAI 1998 available
at http://citeseer.nj.nec.com/coen98design.html.

Connolly, D, and van Harmelen, F, Horrocks, I, McGuinness, D, Patel-Schneider, PF and Stein, LA, 2001,
DAML+OIL Reference Description publisher.

Cost, RS, Finin, T, Joshi, A, Peng, Y, Nicholas, C, Chen, H, Perich, L&F, Zou, YY, Tolia, S and Soboroff,
I, 2002, ‘‘ITTALKS: a case study in the semantic web and DAML’’ Proceedings of the International
Semantic Web Working Symposium NN–NN.

Figure 5 An instant is inside a proper interval if the beginning of the interval is before the instant, and the
instant is before the end of the interval

inside(t,T) ⇐ begins(t1,T) & ends(t2,T) & before(t1,t) & before(t,t2)

206 .

Fikes, R, Jenkins, J and Frank, G, 2003, ‘‘JTP: a system architecture and component library for hybrid
reasoning’’ Proceedings of the Seventh World Multiconference on Systemics, Cybernetics, and Informatics
available at http://ksl.stanford.edu/pub/KSL_Reports/KSL-03–01.pdf.

Finin, T, Joshi, A, Kagal, L, Ratsimore, O, Korolev, V and Chen, H, 2001,‘‘Information agents for mobile
and embedded devices’’ Fifth International Workshop Cooperative Information Agents.

Haarslev, V and Möller, R, DATE, ‘‘Description of the RACER system and its applications’’ Proceedings
International Workshop on Description Logics (DL-2001).

Heflin, J, 2003, ‘‘Web Ontology Language (OWL) use cases and requirements’’ W3C candidate
recommendation.

Kindberg, T and Barton, J, 2001, ‘‘A Web-based nomadic computing system’’ Computer Networks 35(4)
443–456.

Kopena, J and Regli, WC, 2003,‘‘DAMLJessKB: a tool for reasoning with Semantic Web’’ IEEE Intelligent
Systems 18(3) 74–77.

Kumar, S, Cohen, PR and Levesque, HJ, 2000,‘‘The adaptive agent architecture: achieving fault-tolerance
using persistent broker teams’’ Proceedings of the Fourth International Conference on Multi-Agent Systems
159–166.

Lassila, O and Swick, RR, 1999,‘‘Resource description framework (RDF) model and syntax specification’’
available at www.w3c.org.

Peters, S and Shrobe, H, 2003, ‘‘Using semantic networks for knowledge representation in an intelligent
environment’’ Annual IEEE International Conference on Pervasive Computing and Proceedings of the 1st
Annual IEEE International Conference on Pervasive Computing and Communications (PerCom’03)available
at http://www.ai.mit.edu/projects/aire/pub-repository/peters-semanticnet.pdf.

Randell, DA, Cui, Z and Cohn, AG, 1992,‘‘A spatial logic based on regions and connection’’ Proceedings of
the 3rd International Conference on Knowledge Representation and Reasoning.

Sagonas, K, Swift, T, Warren, DS, Freire, J, Rao, P, Cui, BQ and Johnson, E, 2003,The XSB Programmers’
Manual Version 2.6 publisher.

Salber, D, Dey, AK and Abowd, GD, 1999,‘‘The Context toolkit: aiding the development of context-enabled
applications’’ Proceedings of CHI’99 434–441.

Want, R, Hopper, A, Falcao, V and Gibbons, J, 1992,The Active Badge Location System Olivetti Research
Ltd.

Yang, GZ and Kifer, M, 2002,Flora-2: User’s Manual Release 0.92 Department of Computer Science, Stony
Brook University, Stony Brook.

An ontology for context-aware pervasive computing environments 207

