
Context-aware Semantic
Service Discovery

Vincenzo Suraci1, Silvano Mignanti2, Anna Aiuto3
University ofRome "Sapienza", Department of computer and system sciences

i2- 2
-

3

Abstract - In the last few years telecommunications and
internet have spread all over the world, in a pervasive way,
connecting millions of devices, people, sensors and services
without a planned strategy. In such scenario the discovery of
services represent still an open challenging research field.

To address that problem this paper proposes a context-
aware semantic service discovery architecture designed to
perform distributed Service Discovery in heterogeneous
networks. This novel architecture is technology independent
and compatible with most of the existent service discovery
protocols; it inherits and extends the results of the last
research groups in the field of context-aware service discovery
based on the use of semantic languages.

The present work presents the first results of the service
discovery design activity which has been carried out within
DAIDALOS II (Designing Advanced network Interfaces for
the Delivery and Administration of Location independent,
Optimised personal Services), a project granted in the
European 6th Framework Research Programme, within the
IST (Information Society and Technology) thematic area.

Index Terms - Service Discovery, Context awareness,
Semantic Description, Service Ontology, OWL-S.

I. INTRODUCTION

R ecent improvements in embedded system technologies
and the increase of Broadband Internet accesses have

caused a dramatic spread of interconnected people and
services. In such pervasive computing environments, where
a great number of sensors and devices collaborate and
provide numerous services, a powerful service discovery is
a vital process.

Current service discovery protocols, such as Jini, UPnP,
Salutation, UDDI do not make use of contextual
information in discovering services, and, as a result, fail to
provide the most appropriate and relevant services for users
[11], [12]. In addition, current protocols rely on keyword-
based search techniques and do not consider the semantic
description of services. Thus, they suffer from poor
precision' and recall2. This leads to the possibility of using
context to improve service discovery.

1 Precision - a standard measure of information retrieval
performance, defined as the number of relevant items
retrieved divided by the total number of items retrieved.
The highest value of precision is achieved when only
relevant items are retrieved [9].

2 Recall - a standard measure of information retrieval
performance, defined as the number of relevant items
retrieved divided by the total number of items in the
collection. The highest value of recall is achieved when all
relevant items are retrieved [9].

The context-aware computing literature [4] defines
context as "information that can be used to characterize the
situation of an entity. An entity is a person, place, or object
that is considered relevant to interaction between a user and
an application including the user and application
themselves". Context awareness, on the other hand, is
defined as "a property of a system that uses context to
provide relevant information and/or service to the user,
where relevancy depends on the user's task" [4].
Consequently, context-aware service discovery can be
defined as the ability to make use of context information to
discover the most relevant services for the user.

To be able to provide Context-aware services (CA
services), these need to consider context input besides
functional3 input. Therefore, the output of context-aware
service now also depends on contextual information.
Contextual inputs are provided by context providers that
form a new party in the service provisioning process.
Besides context inputs, a service exhibits context itself.
Services that exhibit context but do no require context
inputs are not considered context-aware, because they do
not use user context to provide tailored information.
However, they can be context-aware discovered.

Various models have been proposed to represent context
information: for example, attributes and values models,
mark-up language models, first order logic models, object
oriented models and ontologies.

Ontologies have proved to be the most suitable model
[8] for representing and reasoning on context information
for the following reasons: (i) ontologies enable knowledge
sharing in open, dynamic systems; (ii) ontologies with well
defined declarative semantics allow efficient reasoning on
context information; and (iii) ontologies enable service
interoperability and provide the means for networked
services to collaborate in a non ambiguous manner.

For describing the semantics of services, the latest
research in service-oriented computing recommends the use
of the Web Ontology Language for Services (OWL-S) [2].
OWL-S is an ongoing effort to enable automatic discovery,
invocation, and composition of web services. Even though
OWL-S is tailored for web services, it is rich and general
enough to describe any service. Furthermore, OWL-S does
not include a semantic description of contextual
information. Thus, in its current state, it does not support
context aware discovery in pervasive computing
environments.

3 Functional inputs refer to the typical service's
properties, such as Inputs, Outputs, Preconditions and
Effects (IOPEs).



The paper proposes a context-aware semantic service
discovery architecture using an innovative context aware
filtering process. Section II describes the ontology-based
Service Description languages; while section III presents
the state of the art in Context Aware Service Discovery.
Section IV and V present, respectively, our reference
context and discovery architecture. Section VI describes the
registration and discovery functionalities; and section VII
presents an OWL-S extension to share a common ontology.
At the end some considerations point out the innovations
introduced by the present work.

II. ONTOLOGY BASED SERVICE DESCRIPTION

Most of the existing service discovery protocols retrieve
services descriptions that contain particular keywords from
the user's query (SLP, UPnP, Bluetooth, etc.). In most of
the cases this leads to low recall and low precision of the
retrieved results. The reason for low recall is that query
keywords might be syntactically different from the terms in
service descriptions; while low precision is due to the fact
that query keywords might be syntactically equivalent but
semantically different from the terms in the service
description. Thus, traditional service discovery mechanisms
have limited quality results, because they lack a common
understanding on services. Matchmaking based on different
knowledge levels is hard, if not even impossible. Therefore,
ontology is an envisioned mechanism to overcome this
limitation.

Ontologies enable semantic matchmaking; they define
concepts and their relations that specify semantics of
information better than non-related keywords. These
semantic definitions can be used to match service and
request based on properties and their semantics rather than
on keywords (e.g. syntactic matchmaking). This can lead to
more relevant discovery results. The main goal of
ontologies is to create a common understanding on a
specific domain. By creating this common understanding,
the sketched problems with keyword-based service
discovery mechanisms can be overcome.

A lot of research activities have been carried out to
define ontology languages to be used to describe the
semantic web services. A Semantic Web Service results
from the combination of the Semantic Web and Web
Services. The Ontology Web Language for Services (OWL-
S) is the most complete effort for describing semantic Web
services. Besides describing high-level capabilities of
services, OWL-S allows the description of services'
behaviours using conversations.

OWL-S defines Web services capabilities in three parts:
the Service Profile, the Process Model and the Service
Grounding. The Service Profile gives a high-level
description of a service and its provider; it is generally used
for service publication and discovery. The Process Model
describes the service's behaviour as a process, either atomic
or composed. The Service Grounding specifies the
information necessary for service invocation, such as
underlying communication protocols, message formats,
serialization, transport and addressing information. The
Service Grounding defines mapping rules to link OWL-S
atomic processes to the web service description language
(WSDL) operations.

In the present work we will extend the OWL-S
capabilities in order to cooperate with a semantic
knowledge base expressed in OWL [3], shared between all
the components of our architecture.

III. LATEST RESEARCH ACTIVITIES ON CONTEXT-AWARE

SERVICE DISCOVERY

In the Context-Aware (CA) service discovery, an
association between the service requestor, service provider
and context provider needs to be created.

There are two major reasons why the matching process
can initiate the search for context:
1. Request completion: applied to client side, it should be

performed when the service requestor wants to find
services based on contextual criteria; this information is
used to match the request with the context of the
service and of the surrounding environment. By
completing the request with contextual information on
the requestor and with context requirement on the
service and the environment, the precision of the results
that are more relevant can be returned.

2. Input completion: applied to service provider side, it
should be performed when possible services require
context inputs that the service requestor or the
surrounding environment does not provide. By
completing missing inputs, the recall of the result is
improved since the services that would be ignored
when not using context, are now returned.

The context-aware service discovery can play an
important role in improving the quality of the discovery
result: recall and precision rates become higher when
including context in the service discovery process.

On the one hand, the contextual information makes the
user's query more information-rich and, thereby, provides
means for high precision of the retrieved results. On the
other hand, the contextual information can serve as an
implicit input to a service that is not explicitly provided by
the user. This prevents filtering out the services that require
this input from the user, which leads to higher recall of the
retrieved results.

The nature of context introduces some limiting factors
on how well precision and recall can improve. When the
context is imperfect, the precision and recall decrease
because incorrect information is used. Furthermore,
alternative representations, among the service requestor,
providers and context providers, results in mismatches and
decreases precision and recall.

Some system requirements for CA service discovery
mechanisms can be derived. First of all a Common
understanding is required. In fact, by introducing context,
another party is introduced in the service provisioning
process: the context provider. Service provider, service
requestor and now also context provider have different
knowledge of the services and without mechanism to create
a common understanding, poor discovery result may occur.
On the other hand a Semantic matchmaking is necessary:
context has different representations making them
semantically rich. This increases the need for semantic
description mechanisms and semantic reasoning.



In the light of the above description, the Context-aware,
Ontology based, Semantic Service Discovery (COSS) [10] -
Service discovery approach is characterized by three major
aspects: (i) context-awareness, (ii) ontologies and (iii)
semantic reasoning. COSS collects and uses contextual
information to complete required inputs for services that the
user does not explicitly provide; it uses the Ontology Web
Language (OWL) to create common domain specific
understanding; and it makes use of the ontologies semantic
reasoning, even if it reasons only the subclass relation. The
real limits of this architecture are the use of domain specific
ontologies and the impossibility for the user to weigh the
properties he likes the service to have. These aspects could
improve the quality of the service discovery result.
Furthermore, as mentioned before, this approach supports
only the OWL subclass relation, which is a transitive
relation; in reality, there are many more types of relations.

Another solution is the Context-Aware Service Enabling
(CASE) platform [7] that combines context-aware service
discovery with service composition. The main function of
the CASE platform is to dynamically adapt services by
changing their composition in response to context changes.
To accomplish this, the platform consists of a composition
service and two types of discovery services: a context
aware discovery service and a basic discovery service
(based on a Jini lookup service). Context-aware discovery
services, other services in the Jini network, and context
sources are all Jini services. Context information is
obtained through context agents, each one storing
references to context sources that can provide context
information about the associated entity. Both active and
passive discovery are supported. This approach uses
ontologies to describe context sources and services. The
main disadvantage of CASE approach is to lay on a specific
service discovery protocol, Jini, which is limited to a local
area network environment and to a specific programming
language.

The architecture proposed in [1] represents both the
contextual information and service description, using an
ontology-based approach, a shared ontology that is an
extension of the Standard Ontology for Ubiquitous and
Pervasive Application (SOUPA [5]) in order to represent
additional contextual information. It defines and represents
generic concepts, such as person, agent, time, space, and
event; but it lacks a clear semantic description of services:
thus, it has been coupled with OWL-S. The combined
ontology is shared among all the entities in the
environment, including the context engine, the discovery
component, services, users, and providers. The main lack of
this approach is an integrated architecture completely based
on the power of OWL (to manage the context) and OWL-S
(to manage the service description), which is the main effort
of the present work.

IV. REFERENCE CONTEXT ARCHITECTURE

We have adopted a totally different reference context
architecture where it is possible to distinguish the following
entities (see fig. 1):

* The User, that is the entity starting the discovery
process and receiving the list of service found;

* The Service, that is what the end user is looking for;

* The Environment, that is the pervasive entity in
which the user is involved;

* The Context Manager, that is the entity which
administrates, stores, retrieves and distributes
context information

User, Service and Environment entities produce context
information by means of proper sensors. These sensors are
interfaced with the context manager through the context
sources (CS). For example, an end user equipped with a
GPS-enabled PDA can provide some context information,
like the terminal battery charge, his geographical position,
the terminal screen size, etc., using proper software or
hardware sensors. The raw context data are computed by the
context source in order to be sent and stored in the context
manager (CM). The role of CM is to store the context
information produced by the context sources. It also
provides a Publish-Subscribe mechanism to make the
context information be available to the external applications
that need it. Finally, it also provides some filtering rules to
select the required context information.
A generic service produces context information. A fax

service, for example, is characterized by an outgoing queue
length, the cartridge status, the number of remaining sheets
and so on. Also the pervasive environment in which the user
is involved in can provide useful context information, like
temperature, connectivity, pollution, presence detection and
so on.

Figure 1 - Context Architecture

On the other hand, user and service entities have some
requirements on the context information they need in order
to work properly. An user can specify some requirements on
the context of the services he is looking for, like its
availability status or location, and on the context provided
by the environment, like the availability of a wireless
connection or the presence of air conditioned. A service can
require the user to provide specific context information, like
its location or some terminal capabilities, and the
environment to provide context information, like movement
detection or network quality of service.

V. REFERENCE DISCOVERY ARCHITECTURE

Nowadays almost all the Service Discovery Protocols
are based on a simple framework including three main



entities: (i) the User which triggers the discovery process
sending a basic query to (ii) the Service Directory Server,
which stores the basic service descriptions in a registry, and
filters them on the base of the basic query, replying to the
user the list of available services matching the search
criteria. (iii) The Service Provider communicates with the
Service Discovery Server to publish the services it owns.

In order to achieve backward compatibility to the
existing discovery architectures, we extended this basic
discovery mechanism introducing an integrated solution to
deal with a semantic context-aware discovery process. The
reference discovery architecture is shown is figure 2.

As already explained in the previous section, the user
takes care about its own context thanks to the presence of
CSs that point to the user context stored in the CM. The
user also has some requirements on the context of the
services he is looking for and the environment he is
involved in. These requirements are expressed using
semantic query languages, like RDQL or OWLQL. The
user starts the service discovery process providing the
service discovery server a query composed by two parts:
the basic query, which is expressed in one of the low level
discovery languages (like SLP, UPnP, UDDI, etc.), and the
semantic query, which is expressed using a high level
semantic query language.

Figure 2 - Reference Discovery Architecture

The Service Provider (SP) owns one or more services.
Each service has its own context stored in the CM, its
requirements on the context of the user and the
environment, which are expressed using a semantic query

language, and its own description. The service description
is represented by a basic description and a semantic
description. The former is expressed using the description
model of the low level discovery language (for example, in
SLP, it is a list of attribute-value couples; in UPnP, it is an

XML file); the latter is expressed using a semantic language
(for example OWL or WSMO).

The Service Discovery Server (SDS) provides two main
functionalities: it stores the service descriptions in a registry
and it filters the available services using the information
sent by the user.

VI. SERVICE REGISTRATION AND DISCOVERY

Let's see now how the entire architecture works
describing in detail the two main processes needed to find a
service: the registration of a service and the discovery of a
service. In order to register a service, the SP should:
- register the CSs of that service in the CM;
- define the requirements on the user and the

environment for that service;
- define the service basic and semantic description:
- register in the SDS registry the service description, the

service requirements and the pointer to the service
context.

On the other hand to discover the needed services an User
should:
- register its own CSs in the CM;
- specify the user requirements on the service context and

on the environment context;
- specify the basic and the semantic query
- send to the SDS filter the query, the user requirements

and the pointer to the user context.
Once the SDS receives the request from an user, it activates
the filtering engine. One of the innovations introduced in
this work is the three phases filtering mechanism performed
by the SDS.

En BASIC QUERY BASIC FILTER D SESRVIPTIO

_-I _________ I_ -------- 1------------
z

SEMANTIC QUERY SEMANTIC FILTER DECITO

CONTEXT FILTER
USER REQUIREMENTS S 1 SRV REQUIREMENTS
Onl SERVICE CONTEXT Onl USER CONTEXT

z
o CONTEXT FILTER
O) STEP2

USER REQUIREMENTS SRM REQUIREMENTS
Onl ENV. CONTEXT CONTEXT FILTER On ENV. CONTEXT

STEP 3

USER CONTEXT ENVIRONMENT CON S CONTEXT

Figure 3 - Three phases filtering mechanism

The Basic filter involves the basic query of the user and the
basic descriptions stored in the registry. For each
description, the query is evaluated using a protocol specific
filtering engine (i.e. the one of SLP or UPnP). This first
filtering step is mainly used to perform a rough filtering,
aiming to select the correct type of service and decrease the
number of matching services to be passed to the next phase,
which is more time consuming.
The Semantic filter requires the semantic query of the user
and the semantic description of each service not filtered
during the first phase. This step increases the recall rate and
the precision of the overall filtering mechanism, thanks to
the use of a semantic engine. The result is a list of services
having exactly the characteristics the user wants, but
without any restriction on the context information.
Finally a Context filter is applied. It consists of three sub-
steps. First of all, the SDS gathers from the CM the context
information of the service and then applies on it the User



requirements on the service context. Then the SDS retrieves
from the CM the context information of the User, and
applies on it the service requirements on the user context.
Finally, the SDS gets (always from the CM) the
environment context and applies on it both the user and the
service requirements on the environment context.

VII. OWL-S EXTENSION

The Reference Discovery Architecture has been
designed to be independent from the specific low level
service discovery protocols and the specific semantic
languages used to describe the service descriptions and the
context information. But an integrated ontology structure
could be used in order to unify the semantic language used
for the context and the one used for the service description.

The latest researches on this topic (i.e. [1], [5], [6], [8],
[10] and [13]) show that the use of OWL-S for the
description of services is an effective solution, but it does
not include a semantic description of contextual
information, thus a proper extension is needed.

The ServiceProfile class is enriched with a context
attribute, which is a URL pointing to the real service
context stored in the CM as an OWL file. In that way the
whole architecture could simply lay on a shared OWL-
based ontology where the service description follows the
OWL-S rules, while the context is directly described in
OWL.

supports
'-4

presentsS describedby t

DESCRIPTION (OWL-S)
CONTEXT___(OWL__
CONTEXT (OWL)

t- context

-SD:u-l

Figure 4 - extended OWL-S ontology

This solution is suitable but also elegant from a
theoretical point of view. In fact the service profile
represents the description of the whole service that includes
not only the static service characteristics but also the
dynamic service characteristics: the context. While the
former can be easily stored in the SDS registry as a static
OWL-S file, the latter changes dynamically and needs a
CM to manage it. Whenever a context filter needs the
service context information, it queries the CM using the
context attribute.

Finally using this simple extension, the semantic and the
context filtering engines lay both on the OWL filtering
engine, simplifying the overall architecture complexity.

latest researches in this field. An effective context
architecture model has been designed to be used by a
technology and language independent service discovery
architecture. A novel three phase filtering process has been
introduced. Finally, an integrated semantic approach based
on OWL has been presented in order to deal at the same
time with the service description and the context
information model.

DAIDALOS DISCLAIMER

The work described in this paper is based on the results
of IST FP6 Integrated Project DAIDALOS II. The project
receives research funding from the European Community's
Sixth Framework Programme. Apart from this, the
European Commission has no responsibility for the content
of this paper.

REFERENCES

[1]. A.R. El-Sayed and J. Black, "Semantic-Based Context-Aware
Service Discovery in Pervasive-Computing Environments".

[2]. W3C, "Web Ontology Language for Services (OWL-S) 1.1,"
http://www.daml.org/services/owl-s/1.1/2005.

[3]. W3C, "Web Ontology Language (OWL)."
httpHwwww3.og/TRowl-eatures,February 2004.

[4]. A. Dey, D. Salber and G. Abowd, "A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware
applications". In Human-Computer Interaction, volume 16, pages 97-
166,2001.

[5]. H. Chen, F. Perich, T. W. Finin, and A. Joshi, "Soupa: Standard
ontology for ubiquitous and pervasive applications". In
MobiQuitous, pages 258-267. IEEE Computer Society, 2004.

[6]. X. Hang Wang, D. Q. Zhang, T. Gu and H. K. Pung, "Ontology based
context modelling and reasoning using owl". In PerCom Workshops,
pages 18-22, 2004.

[7]. C. Hesselman, A. Tokmakoff, P. Pawar and S. lacob, "Discovery and
Composition of Services for Context-Aware Systems".

[8]. S. Ben Mokhtar, D. Fournier, N. Georgantas, V. Issarny, "Context-
Aware Service Composition in Pervasive Computing Environments",
INRIA Rocquencourt 78153 Le Chesnay, France,http.: /
srocg.inria.fr/arles/

[9]. L. Steller, S. Krishnaswamy and J. Newmarch, "Discovery Relevant
Services in Pervasive Environments Using Semantics and Context".

[10]. T. Broens, "Context-aware, Ontology based, Semantic Service
Discovery". Master's thesis, University of Twente, Enschede. The
Netherlands, 2004

[I1]. M. W. M. Feng Zhu and L. M. Ni., "Service Discovery in Pervasive
Computing Environments", Pervasive Computing, vol. 4, no. 4,
pp.81-90, 2005.

[12]. M. K. Steve Cuddy and H. Lutfiyya, "Context-Aware Service
Selection Based on Dynamic and Static Service Attributes", in Proc.
of the IEEE Int. Conf. On Wireless and Mobile Computing,
Networking and Communications, (Montreal, Canada), pp. 13-20,
August 2005.

[13]. D. Preuveneers, J. V. den Bergh, D. Wagelaar, A. Georges, P. Rigole,
T. Clerckx, Y. Berbers, K. Coninx, V. Jonckers, and K. De
Bosschere, "Towards an extensible context ontology for ambient
intelligence". In EUSAI, pages 148-159, 2004.

VIII. CONCLUSIONS

In this work we presented a context-aware semantic
service discovery architecture able to give a concrete
response to the main challenging issues risen up by the


