
Context-Aware Collaborative Filtering System:
Predicting the User’s Preference in the
Ubiquitous Computing Environment

Annie Chen

IBM Zurich Research Laboratory,
Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland

ach@zurich.ibm.com

Abstract. In this paper we present a context-aware collaborative filter-
ing system that predicts a user’s preference in different context situations
based on past experiences. We extend collaborative filtering techniques
so that what other like-minded users have done in similar context can
be used to predict a user’s preference towards an activity in the current
context. Such a system can help predict the user’s behavior in different
situations without the user actively defining it. For example, it could rec-
ommend activities customized for Bob for the given weather, location,
and traveling companion(s), based on what other people like Bob have
done in similar context.

1 Introduction

In the ubiquitous computing world, computing devices are part of the bigger
environment, known as the pervasive context. These devices could be aware of
various contexts in the environment, such as the location, the surroundings,
people in the vicinity, or even the weather forecast. Connectivity, or the implied
access to the information highway, is no longer bounded to the desk. The user
could be at the train station, in a shopping mall or even in a different city. The
role of computers in this environment has in a way become more like that of a
personal assistant than, say, of a help-desk. This shift in interaction prompted
us to look at how ubiquitous devices could assist users better by anticipating
their preferences in a dynamic environment.

Currently, context-aware applications mostly rely on manually defined rules
to determine application behavior for varying context. These rules can be pre-
defined by application developers [1, 2] or, alternatively user-configured either
by static preferences [3, 4, 5] or formed over time from user feedback [2]. Static
rules are inflexible and difficult to customize for individuals, whereas the under-
lying learning process in the latter case has a long learning curve and can be
tedious for users. More importantly, these systems are unable to predict a user’s
preference in an unseen situation.

T. Strang and C. Linnhoff-Popien (Eds.): LoCA 2005, LNCS 3479, pp. 244–253, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Context-Aware Collaborative Filtering System 245

It is understandably difficult for a computer to judge the taste of a user,
so in recent years, we have seen a trend towards recommendation systems that
leverage the opinions of other users to make predictions for the user.

Collaborative Filtering (CF) is a technology that has emerged in e-Commerce
applications to produce personalized recommendations for users [6]. It is based
on the assumption that people who like the same things are likely to feel similarly
towards other things. This has turned out to be a very effective way of identifying
new products for customers. CF works by combining the opinions of people who
have expressed inclinations similar to yours in the past to make a prediction on
what may be of interest to you now. One well-known example of a CF system is
Amazon.com.

To date, CF has mostly been applied to web applications for which the context
is undefined, i.e., the content is static, and the recommendations do not change
with the environment. In the dynamic environment of ubiquitous computing, a
user’s decision can be influenced by many things in the surrounding context. For
example, when people travel on holiday, their preferred activities might largely
depend on the weather. Existing CF systems could not model this complexity
of context. They are as likely to recommend mountain routes for a person who
likes hiking whether it rains or shines. Applications in ubiquitous computing
exist that have used CF to give recommendations [2, 7]; however they did not
utilize the context information in the environment, and hence did not break out
of the boundaries of a normal CF application.

In this paper we propose a design for a context-aware CF system in which we
leverage the pervasive context information such that a user’s preference is not only
predicted from opinions of similar users, but also from feedback of other users in a
context similar to that the user currently is in. In contrast to existing methods that
manually determine how each context will influence the desirability of an activity,
we use CF to automatically predict the impact of context for an activity by lever-
aging past user experiences. In our system, context provides the hints necessary
to explore different options, rather than just limiting the set of options.

The remainder of this paper is organized as follows: we begin by examining the
existing process in CF in Section 2. We then introduce context in Section 3.1 and
define the requirements for a context-aware CF system. Next we discuss how to
model context data in a CF system in Section 3.2 and how to measure similarity
between different contexts in Section 3.3, and give an algorithmic extension to
the CF process to incorporate context in Section 3.4. Finally we discuss future
work in Section 4, and conclude in Section 5.

2 Background: Collaborative Filtering Process

The task of collaborative filtering is to predict how well a user will like an item
given a set of feedback made by like-minded users [8]. An active user provides
the CF system with a list of items, and the CF system returns a list of predicted
ratings for those items.



246 A. Chen

Various classes of algorithms have been used to solve this problem, including
Bayesian networks, singular value decomposition, and inductive rule learning [9].
The prevalent class of algorithm used is the neighborhood-based methods. In these
methods, a subset of users is chosen based on their similarity to the active
user, and subsequently a weighted aggregate of their ratings is used to generate
predictions for the active user.

In this section we will describe the stages of neighborhood-based methods
to provide a general understanding of a CF system and give the reader a point
of reference for the latter sections, when we extend this process to incorporate
context.

2.1 Building a User Profile

The first stage of a CF process is to build user profiles from feedback (generally
in the form of ratings) on items made over time. A user profile comprises these
numerical ratings assigned to individual items. More formally, each user u has
at most one rating ru,i for each item i.

2.2 Measuring User Similarity

The key in CF is to locate other users with profiles similar to that of the ac-
tive user, commonly referred to as “neighbors”. This is done by calculating the
“weight” of the active user against every other user with respect to the similarity
in their ratings given to the same items.

The Pearson correlation coefficient, which measures the degree of a linear re-
lationship between two variables, is commonly used to weight user similarity [10].
The similarity weight between the active user a and neighbor u as defined by
the Person correlation coefficient is

wa,u =
∑m

i=1 (ra,i − r̄a) · (ru,i − r̄u)
σa · σu

. (1)

This equation combines the similarity between the relative ratings given by
users a and u on the same item over all the items they have both rated. It gives
a value between -1 and +1, where -1 means that these two users have the exact
opposite taste, and +1 means they have the same taste.

2.3 Generating a Prediction

We can now combine all the neighbors’ ratings into a prediction by computing a
weighted average of the ratings, using the correlations as the weights [10]. The
predicted rating of the active user a on item i can hence be formulated as

pa,i = r̄a + k
n∑

u=1

(ru,i − r̄u) · wa,u, (2)

where n is the number of best neighbors chosen and k is a normalizing factor
such that the absolute values of the weights sum to unity.



Context-Aware Collaborative Filtering System 247

This covers the basic steps of the CF process in generating a prediction for
a user. We now consider the issues involved when introducing pervasive context
into the equation.

3 Incorporating Context into CF

3.1 Introducing Context: Concepts and Challenges

Context is a description of the situation and the environment a device or a
user is in [11]. For each context a set of features is relevant. For each feature
a range of values is determined by the context. From this model a hierarchy
of context subspaces can be developed. Schmidt et al. [11] categorized context
into six high-level subspaces. The first three relate to human factors: informa-
tion about the user (e.g., habits, biophysiological conditions), social environment
(e.g., social interaction, co-location with other users), and user’s tasks (e.g., ac-
tive tasks, general goals). The other three concern the physical environment: lo-
cation, infrastructure (e.g., resources, communication), and physical conditions
(e.g., noise, light, weather).

It is worthwhile noting that the first context identified on the list – knowledge
about the habits of a user – is what a CF system currently models. CF uses this
context to deduce any unknown habits of the user from habits of other similar
users. What is lacking in CF is the knowledge about all the other contexts that
help define a user’s habits in different situations.

To model context in a CF system, we need to associate a user’s choice or
preferences with the context in which the user made that choice. This means
that we need to capture the current context each time the user makes a choice.
The same applies for the reciprocal: when a user asks for recommendations, we
need to capture the current context and evaluate what others have chosen in a
similar context in the past.

This poses two main problems: how do we manage context in the user profile
in terms of data modeling and storage, and how do we measure similarities
between contexts.

3.2 Context Modeling in CF

In a standard CF system, which we described earlier, a user’s profile consists of
a set of items with at most one rating assigned to each item. An item could be
a product, a place or an action, and the rating represents the user’s fondness of
or preference towards that item. In a dynamic environment, a user’s preference
towards an item may change with the context. For example, Bob may want to
visit a family diner instead of a posh restaurant when he is with his kids. To
capture the different preferences towards an item in different contexts, a snapshot
of the context need to be stored along with a user’s rating for an item.

A snapshot of the context is a composite of different types of context data
from various sources. This context can either be acquired from the embedded



248 A. Chen

sensors in the mobile device itself or from an infrastructure placed in the smart
environment which provides these data for the device. Consequently, various con-
text data can be available or unavailable, depending on the infrastructure that
is accessible in the current environment. This yields the requirement that differ-
ent context types should be managed independently, and that their combined
impact be calculated algorithmically.

In modeling context in CF, we took the approach of maintaining all the values
and the structure within each context type. For example, the Location context
object would maintain a hierarchy of all the different locations, such as “Czech
Republic” and “Prague”. Thereby we can minimize redundancy in the system
and improve efficiency. When a user rates an item, the rating is associated with
the current context value inside each available context, see Figure 1. In this
example figure, Bob went to a spa when he was on holiday in Prague, he enjoyed
it and rated this activity 5 out of 10. In the system a rating object is created
that links Bob as the user and “Spa” as the item. There were two context data
available to Bob’s device at that time: the location and the temperature. To
model this, the rating object also links to the value of “Prague” in the Location
context and value of “5 degrees” in the Temperature context.

Fig. 1. Associating context with ratings

The links are bi-directional so that the system could easily traverse all the
items rated for a given context and the entire context in which an item is rated.
Context data is now available to the system, but to render it usable for making
a prediction, we need to be able to compare the context of one user to that of
another.



Context-Aware Collaborative Filtering System 249

3.3 Context Similarity

The goal of calculating context similarity is to determine which ratings are more
relevant for the current context. For instance, when Bob wants to go fishing in
spring, ratings of fishing locations in spring would be more relevant than ratings
of fishing locations in autumn. The similarity of the context in which an item
is rated with the current context of the active user determines the relevance of
this rating. Consequently, for each context type, there needs to be a quantifiable
measure of the similarity between two context values.

Formally we define context here as a tuple of z different context types modeled
in the system:

C = (C1,C2, · · · ,Cz), (3)

where Ct (t ∈ 1..z) is a context type (e.g., Location, Temperature or Time). For
each context type t, there exists a similarity function simt(x, y), with x, y ∈ C,
which returns a normalized value denoting the similarity between x and y with
respect to Ct.

A general comparator can be defined for a context type which has one of the
following properties:

– Categorical, where values in the same category are alike (e.g., transport).
– Continuous, where closer values are more similar (e.g., temperature).
– Hierarchical, where a more general context can be used when no ratings for

a specific context are available (e.g., location).

Context types which do not have these characteristics may require a custom
comparator to be defined for them.

Context types can be vary widely, and it would be difficult to manually define
a similarity function for each context type, so we devised an automated method
to compare the relevance of one context value to another for the same context
type.

We make the assumption that if user preferences towards an item do not
differ much in different contexts, then the ratings given in one context would
also apply for the other. So if the ratings for an item are similar for two different
context values, then these two values are very relevant to each other.

We use the Pearson’s correlation coefficient, which was used to calculate the
similarity weight for a user in Equation (1) to measure the correlation between
two different context variables with respect to their ratings. We denote the rating
given by the user u on item i in context x ∈ C as ru,i,x, and formulate the
similarity weight for two different context variables, x and y, for item i as follows

relt(x, y, i) =
∑n

u=1 (ru,i,xt
− r̄i) · (ru,i,yt

− r̄i)
σxt

· σyt

, (4)

where relt(x, y, i) returns the relevance of two context values in Ct over all the
ratings users gave in these contexts. Compare this with simt(x, y), which returns
the similarity between two context values.



250 A. Chen

Either one or both could be used to weight each rating for the given context
when making a prediction. The advantage of using the similarity function is
that it can be better tailored to a particular context type, although it may be
more restrictive in its comparison. Using the correlation function we were able
to capture non-obvious relations between two context values, but each context
value needs to be populated with many ratings for it to work.

Next we look at how this context is incorporated into the CF process to
generate context-dependent predictions.

3.4 Context-Aware Extensions to the CF Process

Let us revisit the steps of a collaborative filtering process and redefine it to
include context.

Building User Profile. In the context-aware CF system, a user’s feedback
needs to be put into context. This implies that the context needs to be recorded
when the user selects or performs a recommendation. This poses a problem
when the user wants to give explicit feedback on an item long after the action
has passed and the context has changed.

Our advantage is that context data can also provide information on the user’s
current activity, which would enable the system to make implicit feedback for the
user. Implicit feedback is when the system infers a user’s rating for an item based
on the user’s behavior. Which behavior is monitored is application-dependent.
For example, a tourist application could monitor how long a user stays in the
location associated with a particular activity, whereas a shop application could
look at items ordered, and a media-streaming application could see which items
the user chooses to view or skip.

We could also use this implicit feedback to mitigate the problem of delayed
feedback, by prompting the user to give feedback when the application senses the
user has finished an activity (e.g. leaving a location or finished playing a clip).
It could also allow the user to rate from a list of past activities the application
has implicitly captured.

The feedback together with the available context would make up the user
profile in the context-aware CF system as described in Section 3.2.

Measuring User and Context Similarity. In this step a normal CF system
would “weigh” the active user against other users in the system with respect
to similarity in their ratings to locate similar users. To incorporate context we
would also “weigh” the current context of the active user against the context of
each rating with respect to their relevance as described in Section 3.3 to locate
ratings given in similar context.

Generating a Prediction. In this step a prediction is calculated by combining
neighbors’ ratings into a weighted average of the ratings, using the neighbors’
correlations as the weights, see Equation (2).



Context-Aware Collaborative Filtering System 251

In the context-aware CF system, each rating has an associated context. The
similarity of the context in which an item was rated with the context of the
active user determines how relevant this rating is in the current context, so we
need to extend this to use the weighted rating with respect to the relevance of
the rating’s context to the current context.

We define Ru,i,c as the weighted ratings for the user u on an item i in context
c, where c is the current context of the active user, using context similarity as
weights. The context is multi-dimensional so we assume linear independence and
calculate the similarity for each dimension separately, i.e.,

Ru,i,c = k
∑

x∈C

z∑

t=1

ru,i,x · simt(c, x), (5)

where k is a normalizing factor such that the absolute values of the weights sum
to unity. It has nested sums: the inner loops over each dimension in context,
e.g., Location, Weather; the outer loops over all the values in that dimension,
e.g., “Zurich”, “Prague”, “Tokyo” for the Location context.

We now substitute Ru,i,c for the rating of user u on item i without context
ru,i in Equation (2). The predicted rating of the active user a on item i can
hence be formulated as

pa,i,c = r̄a + k

n∑

u=1

(Ru,i,c − r̄u) · wa,u. (6)

This calculation combines all the weighted ratings, with respect to similarity
in context, of all the neighbors, which is then further weighted with respect to
the similarity of user, to give an overall prediction for the active user on an item
in the current context.

4 Future Work

The next step is to evaluate the algorithms. The difficulty here is that we need
real user data to validate whether the predictions match the user’s actual de-
cision. In addition, the collaborative nature of the system requires large user
participation to generate good predictions. As we are the first to apply the CF
technique to pervasive context, there is no readily available datasets to test it
on. One possibility is to initialize the system with ratings from existing CF sys-
tems, such as VirtualTourist.com [12], adding any implicit context information
available (e.g., location). This enables the system to provide general recom-
mendations before more context data is collected to produce context-oriented
recommendations.

We are currently developing a tourist application for mobile phones to demon-
strate and collect data for the context-aware CF engine. We plan to test this
application on a group of students in the laboratory, who will use the application



252 A. Chen

for their weekend travels. The data collected from this deployment will allow us
to evaluate and calibrate our algorithms.

On the modeling side, it would be interesting to look specifically into the
social context and consider the influence of its complex interactions. Whether
one should model relationships as a context (e.g., husband, girlfriend, children)
or combine the profiles of individual participants.

Another important aspect to consider is the privacy issue. The system needs
to keep usage statistics for each user in order to generate personalized recom-
mendations. These statistics coupled with the context information can yield
interpretations to potentially track everything from user movements to social
behavior. Thus it is important that they be managed and protected properly.

5 Conclusion

We have designed a context-aware recommendation system that predicts a user’s
preference using past experiences of like-minded users. We used collaborative
filtering to automatically predict the influence of a context on an activity. We
defined the requirements of introducing context into CF and proposed a solution
that addresses modeling context data in CF user profiles and measuring context
similarity by applying CF techniques. Finally we gave an algorithmic extension
to incorporate the impact context has on generating a prediction.

Much work still needs to be done to deploy the prediction engine in a real
user environment, as we discussed in the section on future work. Predicting
user behavior is an elusive art that requires iterative calibration to adapt to the
user in a dynamic environment. This is why collaborative filtering could be very
beneficial in solving this problem, because who could better to help us predict
the users’ preferences than the user themselves.

References

1. Xiao Hang Wang, Tao Gu, Da Qing Zhang, Hung Keng Pung: Ontology Based
Context Modeling and Reasoning using OWL. In: Second IEEE Annual Conference
on Pervasive Computing and Communications Workshops. (2004) 18–22

2. Mark van Setten, Stanislav Pokraev, Johan Koolwaaij: Context-Aware Recommen-
dations in the Mobile Tourist Application COMPASS. In: Adaptive Hypermedia
2004. Volume 3137 of LNCS. (2004) 235–244

3. L. Ardissono, A. Goy, G.P.: INTRIGUE: Personalized recommendation of tourist
attractions for desktop and handset devices. Applied Artificial Intelligence 17
(2003) 687–714

4. Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, Christos Efstratiou:
Developing a Context-aware Electronic Tourist Guide: Some Issues and Experi-
ences. In: CHI. (2000) 17–24

5. Joseph F. McCarthy: Pocket RestaurantFinder: A Situated Recommender System
for Groups. In: Workshop on Mobile Ad-Hoc Communication at the 2002 ACM
Conference on Human Factors in Computer Systems. (2002)



Context-Aware Collaborative Filtering System 253

6. J.B. Schafer, J. Konstan, J. Riedl: Recommender Systems in E-Commerce. In:
Proceedings of the 1st ACM conference on Electronic commerce, New York, NY,
USA, ACM Press (1999) 158–166

7. R.D. Lawrence, G.S. Almasi, V. Kotlyar, M.S. Viveros, S.S. Duri: Personalization
of Supermarket Product Recommendations. Data Mining and Knowledge Discov-
ery 5 (2001) 11–32

8. Jonathan L. Herlocker, Joseph A. Konstan, John Riedl: Explaining Collaborative
Filtering Recommendations. In: Computer Supported Cooperative Work. (2000)
241–250

9. Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers: An algorithmic framework
for performing collaborative filtering. In: Proceedings of the 22nd Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, New York, NY, USA, ACM Press (1999) 230–237

10. John S. Breese, David Heckerman, Carl Kadie: Empirical Analysis of Predictive Al-
gorithms for Collaborative Filtering. In: Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence. (1998) 43–52

11. Albrecht Schmidt, Michael Beigl, Hans-W. Gellersen: There is more to context
than location. Computers and Graphics 23 (1999) 893–901

12. VirtualTourist.com: (http://www.virtualtourist.com)


	Introduction
	Background: Collaborative Filtering Process
	Building a User Profile
	Measuring User Similarity
	Generating a Prediction

	Incorporating Context into CF
	Introducing Context: Concepts and Challenges
	Context Modeling in CF
	Context Similarity
	Context-Aware Extensions to the CF Process

	Future Work
	Conclusion



