
Harnessing Context to Support Proactive Behaviours
Hee Eon Byun and Keith Cheverst

Distributed Multimedia Research Group,
Department of Computing,

Lancaster University
Lancaster, LA1 4YR

e-mail: {byunh, kc}@comp.lancs.ac.uk

ABSTRACT
In order to realise an intimate and proactive personal assistant under the Weiser’s vision for ubiquitous
computing environments, we propose the utilisation of context history together with user modelling and
machine learning techniques. Our approach could support dynamic adaptations to changes of the user’s
life style or changes in the situation itself by detecting patterns in a user’s behaviour. In addition, we
propose the requirement of an explicit explanation about such dynamic adaptations to the user in order to
encourage a trust relationship between the user and the context-aware system. In this paper, we describe
appropriate scenarios that reveal the potential of our approach. In order to examine how dynamic
adaptations can be implemented, three types of learning design are proposed and the implications of using
these designs are discussed.

1. Introduction
Since Weiser [3] first suggested the concept of ubiquitous computing, context-aware computing has become

one approach for increasing the productivity or welfare of users situated in ubiquitous computing environments.
The value of using context has been demonstrated in a number of context-aware applications, which mainly
focus on providing generally “reactive” adaptations to the user’s personal and environmental context. However,
one can argue that the vision that Weiser had for ubiquitous computing environments, i.e. a vision of “intimate
computing” [4] supporting “human assistance” [5] has yet to arrive. Indeed “intelligent” applications to support
the kind of scenario described in [6] involving Sal (e.g. “proactively” finding and then reserving Sal a parking
place at work) are still awaiting an appearance.

The term ‘Context-aware’ has been defined as “systems [that] adapt according to the location of user, the
collection of nearby people, hosts, and accessible devices, as well as to changes to such things over time” [1].
Besides this definition, a number of definitions can be found in the literature. However, the main concept of
context-awareness is the adaptation of systems to the user or his/her environment by capturing and understanding
contexts, which can be, for example, the user’s preferences, location, temperature of the environment, network
connectivity of the user’s device, etc. In a broad definition, everything that can describe the characteristics of the
user and the situations of his/her environments can be considered as context.

Currently, the usage of context has been largely confined within the following two categories: (i) “using raw
context” and (ii) “interpretation of context using a group of context”. The clearest example of (i) is illustrated by
most location-aware applications. In such applications, location is used as it is, although the representation of
location can be changed, for example, from symbolic to coordinate or vice versa. As an example of (ii), the
Context Toolkit [1] provides a generalised mechanism for the interpretation of groups of context. In more detail,
context aggregators gather all necessary contexts and then context abstractors interpret the group of context
using predefined rules. For example, if the sound level in a meeting room is high and there are some people in
the room, it can be assumed that a meeting is being held in the room [1].

Another limitation of the current generation of context-aware applications is that most applications are only
concerned with the present context (only a few exceptions exist that relate to some form of context-based
information retrieval) [2]. However, the history of contexts might be extremely valuable and could enable us to
go beyond the current level of context interpretation. Such context history could provide far more information
about the user. In more detail, by noticing patterns from the context history (including the user’s behaviour) a
system could exhibit “intelligent” or more specifically “proactive” behaviour. For example, having determined
that the user has a regular meeting schedule, a system could remind the user of that event. The utilisation of
context data history in this way appears to be a relatively under-explored research field.

In this paper, “intelligent” behaviour will be defined as acting proactively on induced knowledge. For
example, if an application can induce the life patterns of the occupants of a house, it can optimise energy costs of
the house. This “intelligent” behaviour will largely depend on knowledge on the user’s habits and goals [7], [8].

In order to extend the current state of context-aware computing to one that is capable of supporting the
development of “intelligent” applications, our approach has been to exploit the research areas of user modelling
and machine learning (see figure 1). The area of user modelling has been used to enable the adaptation and

personalisation of services or information delivered to users, e.g., adaptive hypermedia [9]. The main concept of
context-awareness is the adaptation of systems to the user or his/her environments by capturing and
understanding contexts. Thus, it might be said that context-aware computing and user modelling have a common
goal: that is tailored adaptation. But yet the application areas of each topic currently seem largely unrelated.

The main concern of machine learning is to learn some knowledge or rules from past experiences.
Knowledge or rules learned might be a user’s individual characteristics. For example, the CAP (Calendar
APprentice) application learns a user’s meeting preferences e.g., preferences duration, time, location, etc.[8] and
uses this information to assist the user in the process of scheduling meetings. Thus, machine learning has been
considered as a practical method for the representation and acquisition method for user models. In the research
field of user modelling, machine learning is actively investigated as a practical method to learn a user’s interests,
preferences, knowledge, goals, habits, etc. in order to adapt the services to the user’s individual characteristics
(examples include Mitchell et al [7], Pohl [10], Billsus and Pazzani [11], and Ruvini and Fagot [12]).

Figure 1. A synergistic combination of three distinct research areas.

Anhalt et al [13] and Selker and Burleson [14] also suggest the proactive behaviour of their context-aware
applications. However, in these applications, the proactive behaviours mainly depend on predefined rules, which
are not suitable for providing dynamic adaptations in an environment where the predefined rules should be
adjusted according to changes of the user’s life style or changes in the situation itself. We believe that our chosen
approach, i.e. utilising context history together with user modelling and machine learning techniques can be used
to infer patterns from the user’s behaviour.

One implication of our proposed approach is that the user might not be able to understand the proactive
behaviour of context-aware devices or applications. Consequently, the provision of an explicit and
understandable explanation for a proactive behaviour to the user is desirable. Furthermore, providing the user
with an explanation of the system’s proactive behaviour can enable the user to provide some level of feedback
that may in turn be used by the machine learning algorithms employed. It is important to note that the provision
of explanations to the user raises an important requirement on the type of learning methods that may be used. In
more detail, learning based on decision tree learning is suitable because the rules generated may be intelligible to
humans. However, learning based on the neural network approach is less suitable because the weights produced
by this approach are difficult to interpret by human users [7].

The structure of the remainder of this paper is as follows. In section 2, we derive appropriate scenarios that
can reveal the potential of utilising user modelling and machine learning techniques within context-aware
applications. In section 3, three types of learning design are proposed and the experiment with one of the designs
is explained. Subsequently, several implications discovered by the experiment and future works are provided in
section 4. In section 5, related works are investigated and analysed. Finally, our conclusions at this stage of the
research are presented.

2. Scenarios

2.1 Intelligent Personal Services
The starting scenario for this research was the Personal Digital Secretary (PDS) [15]. This application idea

emerged from considering how the classical remembrance agents, for example, Forget-me-not [16] and
CyberMinder [17], might be extended using the techniques of user modelling and machine learning in order to
support a user’s daily activities in an everyday computing setting [18]. The PDS was designed based on the
assumption that it would support user’s daily activities beyond the role of a remembrance agent or reminder. The
conceptual structure of our PDS is composed of five main modules as shown in Figure 2. For the detailed
explanations for each module, please refer to [15].

Proactive and Personalised
Context-Aware Computing

User
Modelling

Machine
Learning

Context-Aware
Computing

Figure 2. Conceptual Structure of The Personal Digital Secretary.

The scenario proved extremely useful for helping us to explore how the paradigm of context-aware
computing could be usefully augmented by the utilisation of user modelling and machine learning techniques.
Some of the scenarios that can reveal proactive usages of the PDS are described below.

�� Scenario A: When a user passes by a theatre, the PDS can notify the user that the theatre is playing one of
the user’s favourite movies. This type of functionality could be realised by a context-aware system (such
as GUIDE [19]) by utilising both the location context and information about the user’s preference.

�� Scenario B: If a user is in an intelligent environment, for example, in an intelligent home [20] and the user
commands some action, for example, ‘close curtains in the living room’, the PDS could modify its user
model and deliver this command to the appropriate agent in the home. As a result, the system could, over
time, learn that an appropriate context-aware behaviour is to close the curtains when it gets dark outside.

�� Scenario C: If a user participates in a meeting at 10 am every forth Monday, the PDS might learn the
pattern of this regular meeting and remind the user to prepare for the meeting at an appropriate time.
However, a more sophisticated level of learning would be desirable in order to enable the system to realise
when such a notification is inappropriate, for example, when the user is on holiday.

�� Scenario D: if a user makes a rule to hold the room key when leaving his/her office after 6pm, this can be
captured in a user model. Consequently, when the user is about to leave his/her office without the room
key after 6pm, the PDS could warn the user before he/she gets locked out of the office!.

Through the conceptual design and scenarios of the PDS, the proactive behaviours can be broadly
categorised into two types: “proactive modelling-based adaptation” and “proactive rule-based adaptation”. The
first type of proactive behaviour provides adaptations based on the current context and the patterns/rules inferred
from the history of the user’s behaviour and the second means providing adaptations based on the current context
and predefined rules.

2.2 Calculating the Level of Security Risk in a User’s Office
In order to examine how the two types of proactive behaviour can be designed and implemented, we derived

a very specific scenario.

“The user is an academic staff member in a university. The staff members use MediaCup devices [21]
that can sense the temperature of its containing liquid and the status of how it is being used (e.g.,
placed on a surface or carried). When the door of the user’s office is open and the user has left the
office, this situation is generally considered as a case of high security risk. If the security level is
‘high’, a security-warning message will be delivered to the user.”

However, if the MediaCup has hot coffee and is located in the office, this situation might suggest that the
user will return to his/her office within a short time. Therefore, the final decision on the level of security risk of
the user’s office can be influenced by the situation. Such considerations for the exceptional cases (a cup of hot
coffee in the office) against the general rules (the cases of high security risk) may be necessary in order to reduce
frustrating intrusions (inappropriately raising security warnings) into the user’s life. These exceptional cases can
be expressed as a set of rules or can be induced from the past history of the user’s behaviour.

Such past history is not exploited by current approaches for achieving context interpretation. For example,
context aggregation [1], context synthesis [22] and context fusion [23], [24] only utilise current contexts, e.g. the

current location or current time of day. In order for current approaches to consider such exceptional cases, a
number of predefined rules must be adopted. However, such predefined rules may frequently need to change in
order to reflect changes to exceptional cases. Our approach, that of utilising the past history of a user’s behaviour
is presented in the next section.

3. Approach
In this section, we will derive three kinds of inference design in order to obtain a higher level conceptual

context, i.e., the security level of the user’s office. The designs will be described in turn.

3.1 Use of a Single Learning Algorithm
This design uses a single learning algorithm as depicted in figure 3 and therefore inferring the conceptual

context from this design is very straightforward. When a new situation arises, the single machine learning
algorithm induces the security level of the new situation based on the context history. Then, the new situation
and the security level inferred are stored in the context history as a recent instance. According to the result from
learning, a security-warning message could be delivered to the user.

Figure 3. The use of a single learning algorithm.

The actual situation to be inferred might be more complicated than the scenarios that can be solved by a one-
size-fit-all method. For example, even though the user was not in his/her office and the door open, it might be the
case that the user was talking with somebody in the corridor for a moment. In this case, the user could give
feedback to the system, in order to let the system know that “I am having a small meeting with colleagues in
front of my office therefore do not raise a security-warning message in this situation in the future”.

3.2 Use of Predefined Rules and a Single Learning Algorithm
In order to refine the behaviour of our learning system, a set of rules for the decision on the security level can

be predefined and a machine learning algorithm can be used to figure out more specific exceptional cases against
the rules as shown in figure 4. In this design, the first decision on the security level is made by the predefined
rules. However, according to the result from the learning algorithm whose purpose is to consider the exceptional
cases, the final decision can be changed.

Figure 4. The use of predefined rules and a single learning algorithm.

We conducted an experiment to examine this design. For our experiment, it was first necessary for us to
define a set of rules for the general security level of the office. The rules were defined as follows:

�� High security risk: The door is open when the user has left the office during his/her office hours.
�� Low security risk: The door is closed (but not locked) when the user has left the office during his/her

office hours.

Secondly, we needed to develop a system that could ascertain the probability of the user returning to the
office within a short period of time. The steps taken for designing a suitable learning system are described
below.

�� Step 1 is to define a target function that is the type of knowledge to be learned. In this case, the target
function is defined as “Will the user’s location be ‘the office’ in the near future?”

�� Step2 is to decide a hypothesis space (possible value range of the target function). The hypotheses for the
target function are defined as “v1 = true” and “v2 = false”.

Context History
Learning

Algorithm User

Current Contexts (Input)

Current Security Level (Output)

feedback

Context
History

Predefined
Rules

Learning
Algorithm

Current Contexts

Final Security Level

Intermediate
Security

Level

User

feedback

�� Step3 is to establish an appropriate training data set (context history). A training data set is composed of a
set of instances (records), which contain a set of attributes (contexts) relevant to the target function.
Although there could be a number of attributes that are likely to be relevant to our target function, in order
to focus on the relations between the user’s location and the status of the MediaCup, we considered just
two attributes i.e., “UserInOffice” and “TempCup”. The context history based on these two attributes is
presented in table 1.

Time Stamp t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
UserInOffice true true true false true true false false false true true true
TempCup cold hot hot hot hot cold cold cold cold cold hot hot

Table 1. Context history as a training data set.

�� Step 4 is to select or design an appropriate learning algorithm. We selected the Naïve Bayes Classifier in
order to obtain explicit probabilities for each hypothesis.

For the next time period of this context history, i.e., “t13”, if the user is not in the office and the door open,
the intermediate security level becomes “high” based on the predefined rules. Subsequently, this high level of
security risk will trigger a test for exceptional cases. If the new situation raised at this time indicates
UserInOffice = false and TempCup = hot, the Naïve Bayes algorithm will calculate the probabilities P(vj),
P(ai|vj), and finally vNB = argmax P(vj)Π P(ai|vj) [8] as follows:

• P(vj): the probabilities of the different target values, based on their frequencies over the training data set
P(UserInOffice = true) = 8/12 = 0.667
P(UserInOffice = false) = 4/12 = 0.333

• P(ai|vj): the conditional probabilities for each combination of attributes and target values, based on their
frequencies over the training data set

P(TempCup = hot | UserInOffice = true) = 5/12 = 0.417
P(TempCup = hot | UserInOffice = false) = 1/12 = 0.083

• The probabilities for each hypothesis
v1 = P(UserInOffice = true) × P(TempCup = hot | UserInOffice = true) = 0.278
v2 = P(UserInOffice = false) × P(TempCup = hot | UserInOffice = false) = 0.028

In this situation, the Naïve Bayes Classifier calculates the conditional probability of the user being in his/her
office (0.278/(0.278+0.028) = 0.908) as higher than that of the user being in another place (0.028/(0.278+0.028)
= 0.092). Based on this result, it could be reasoned that for the time period “t14” the user is likely to return to the
office given that the MediaCup contains hot coffee. Therefore, if we can accept this probabilistic decision, the
final security level could be changed from “high” to “low”, hence no security warning message would be raised
even though the user has left the office and left the door open. If the user chooses to query this behaviour, the
system could provide an explanation such as: “Because your MediaCup contains hot coffee and is located in
your office, the security level was set to ‘low’.”

3.3 Use of Multi Learning Algorithms
With this design, the interpretation process is composed of several learning algorithms as depicted in figure

5. In general, the selection of learning algorithms depends on the characteristics of the situations to be learned.
For example, the Bayesian method can be adopted when multiple hypotheses are needed (not just for “yes” or
“no”) and a set of rules can be extracted from a decision tree. Therefore the decision tree learning method is
suitable for learning algorithm 1 and the Naïve Bayes Classifier is suitable for learning algorithm 2.

Figure 5. The use of multi learning algorithms.

Learning
Algorithm1

Current Contexts

Final Security Level

Contexts History

Subset2 Subset1

Learning
Algorithm2

Intermediate
Security

Level

4. Findings and Future Work
The basic assumption of probabilistic learning methods (e.g., Naïve Bayes Classifier) is that probability

distributions are the basis of inference and, therefore, reasoning about these probabilities for a new situation can
lead to an optimal decision for the new situation [8]. In addition, inductive learning methods (e.g., decision tree
learning) are based on the generalisation of patterns. In more detail, identifying features (e.g., the user is in the
office) are generalised from some observed training data set (e.g., our context history). Consequently, although
the probabilistic result from the Naïve Bayes Classifier or the rules from the decision tree learning indicate that
the user is likely to be in the office, we clearly cannot state (with absolute certainty) that the user will return to
the office for the next time period. The decision based on these learning methods intrinsically holds uncertainty.

Another implication is that the experiment described in the previous section seems to be over simplified. In
order to extract patterns of the user’s behaviour more precisely, temporal elements (the transition period of the
changes in the status of context) ought to be considered as another dimension. In more detail, the coincidence of
transitions for the value of UserInOffice (from false to true) and for the value of TempCup (from hot to cold) can
allow us to measure more precisely the likelihood of the user returning to the office in the near future. For
example, given that the transition period of UserInOffice (from false to true) usually coincides with the transition
period of TempCup (from hot to cold), the user is more likely to return to the office before the cup becomes cold.
Furthermore, if the user does not return to his/her office within the transition period of TempCup (from hot to
cold) a security-warning message should be raised.

With regard to the initial stage of interpretation based on the context history (i.e. insufficient context history
to induce rules or probabilities for the interpretation) an approach based on predefined rules and multi learning
algorithms could prove the most effective one. At this initial stage, the decision on the security level can be made
by the predefined rules until enough situations are accumulated in the context history. However, in general, the
rules themselves could be changed gradually. These changes can be come about without human intervention by
adopting the decision tree method under the multi-layered learning design.

Through our examination of a learning system (based on Predefined Rules and a Single Learning Algorithm)
we discovered a number of issues that will motivate our future work in this area.

�� How can the uncertainty aforementioned be reduced? We need to investigate other machine learning
methods or some supplementary process for adopting the probabilistic approach.

�� How can the system explicitly understand and reflect the user’s feedback on its future behaviour?

�� How can the temporal elements be considered with context?

�� In the long run, the life style of the user might be changed. How can the old context history be excluded
from the process of interpretation in order to reflect only the recent patterns of behaviour?

�� How can the final or the intermediate results be represented and updated in a user model for reuse?

5. Related Works
Several applications developed by Anhalt et el. [13] can minimise distractions in a pervasive computing

environment, based on context-awareness. Firstly, the PHD (Portable Help Desk) application is designed to
deliver information needed to the user in a proactive manner. For example, the PHD can suggest a nearby printer
when the user begins a print job. Secondly, the Matchmaker application determines the most appropriate expert
for the user’s problems by considering experts’ skills, availability, and distance from the user. Finally, context-
aware agents deliver relevant information to the user according to the situation of the user and the priorities of
each event in the user’s calendar.

Two proactive model-based systems were suggested by Selker and Burleson [14]. Firstly, the COACH
(COgnitive Adaptive Computer Help) system provides adaptive help to the user based on his/her level of skills,
namely novice, intermediate, and professional. Secondly, the Music Ball system is designed to examine the
potential of creating a relationship between the computer and the user. In more detail, the system continuously
models the actions and preferences of a ball-user and provides sounds based on the user model.

Mtichell et al. [7] provided the CAP (Calendar APprentice) application that helps a user with scheduling
calendars based on the user’s scheduling preferences. In particular, through the design of the CAP, they explored
the potential of machine learning methods for the implementation of personal software assistants. The CAP runs
a decision tree learning algorithm on the past calendar information at each night, in order to refine the set of rules
that will be used to provide advice on the following day.

The aforementioned applications can be considered as various cases that realise the concept of our PDS
whose aim is to provide intimate and proactive personal assistants. Firstly, PHD and Matchmaker provide a kind
of “rule-based proactive adaptation” based on current context. Secondly, COACH and Music Ball utilise user
modelling techniques in order to provide adaptations based on, for example, the characteristics and preferences
of the user. Finally, CAP employs a machine learning algorithm in order to provide proactive suggestions on the
user’s scheduling calendars. All these applications demonstrate part of our approach, namely context-awareness,
user modelling, or machine learning. However, we argue that the synergistic combining of these distinct
techniques is required in order to fully exploit the value of context history and support the development of
intimate and proactive personal assistants.

6. Conclusion
This paper has explored the potential of utilising machine learning techniques in order to obtain higher levels

of context interpretation based on context history. The security guard scenario was considered in order to
examine two types of proactive behaviour, namely “proactive modelling-based adaptation” and “proactive rule-
based adaptation”. In order to examine how the two types of proactive behaviour can be implemented, three
types of learning system were designed. The design for the use of predefined rules and a single learning
algorithm was examined with the Naïve Bayesian Classifier. Under this design, we explored the exceptional
situations in conjunction with predefined general rules. We also considered how an explanation for proactive
behaviour could be provided to the user. However, in order to utilise the result from probabilistic learning
methods, the consequence of the uncertainty must be further investigated.

To summarise, through the conceptual design of our PDS and the design for calculating the level of security
risk, the following key issues arise:

i. Proactive behaviour can be broadly categorised into two types: “proactive modelling-based adaptation”
and “rule-based proactive adaptation”

ii. Proactive modelling-based adaptation can provide dynamic adaptations in an environment where the
predefined rules need to be adjusted according to changes of the user’s life style or changes in the
situation itself.

iii. Utilising context history together with user modelling and machine learning techniques is a novel
approach for inferring patterns from the user’s behaviours that is implicitly contained in context history.
Such an approach has the potential to support dynamic adaptations.

iv. The provision of an explicit and understandable explanation for a proactive behaviour to the user is
desirable in order to encourage a trust relationship between the user and the context-aware system. This
raises an important requirement on the design of learning systems including the selection of appropriate
learning methods.

v. We believe that a design based on the use of predefined rules and multi learning algorithms could be
effective at both an initial stage of learning (i.e. when little context history exists) and also during later
stages when it is necessary to support dynamic adaptations.

In the near future, we intend to experiment further with our design based on the use of predefined rules and
multi learning algorithms. We also intend to look more closely into the support required for determining and
exploiting patterns of behaviour based on temporal transitions relating to context history.

Reference
1. Dey A.K. and G.D. Abowd (2000) The Context Toolkit: Aiding the Development of Context-Enabled

Applications. Workshop on Software Engineering for Wearable and Pervasive Computing, Limerick,
Ireland.

2. Salber D. and G. D. Abowd (1998) The Design and Use of a Generic Context Server, Perceptual User
Interfaces Workshop (PUI ’98), San Francisco CA, pp. 63-66.

3. Weiser M. (1993) Some Computer Science Issues in Ubiquitous Computing, Communications of the ACM,
Vol 36(7).

4. Kay A. (1991) Computers, Networks, and Education, Scientific American, September, pp 138 – 148.

5. Tesler L. (1991) Networked Computing in the 1990’s, Scientific American, September, pp 86 – 93.

6. Weiser M. (1991) The Computer for the 21st Century, Scientific American, September, pp 94 – 104.

7. Mitchell T. M., R. Caruana, D. Freitag, J. McDermott and D. Zabowski (1994) Experience With a Learning
Personal Assistant, Communications of the ACM, 37(7).

8. Mitchell T. M. (1997) Machine Learning, McGraw-Hill.

9. De Bra P. and L. Calvi (1998) AHA! An open Adaptive Hypermedia Architecture, The New Review of
Hypermedia and Multimedia, Vol 4, pp 115-139.

10. Pohl W. (1996) Learning About the User – User Modeling and Machine Learning, Workshop in ICML'96
on Machine Learning meets Human-Computer Interaction.

11. Billsus D. and M. Pazzani (1997) Learning Probabilistic User Models

12. Ruvini J. D. and C. Fagot (1998) IBHYS: A New Approach to Learn Users Habits, Proceedings of
ICTAI’98, IEEE Computer Society Press.

13. Anhalt J., A. Smailagic, D.P. Siewiorek, F. Gemperle, D. Salber, S. Weber, J. Beck and J. Jennings (2001)
Toward Context-Aware Computing: Experiences and Lessons, IEEE Ingelligent Systems, Vol 16 (3), pp 38
– 46.

14. Selker T. and W. Burleson (2000) Context-aware design and interaction in computer systems, IBM System
Journal, Vol 39 (3&4), pp 880 – 891.

15. Byun H.E. and K. Cheverst (2001) Exploiting User Models and Context-Awareness to Support Personal
Daily Activities, Workshop in UM2001 on User Modelling for Context-Aware Applications, Sonthofen,
Germany.

16. Lamming M. and M. Flynn (1994) "Forget-me-not" Intimate Computing in Support of Human Memory,
Symposium on Next Generation Human Interface, Meguro Gajoen, Japan.

17. Dey A.K. and G.D. Abowd (2000) CyberMinder: A Context-Aware System for Supporting Reminders,
Symposium on Handheld and Ubiquitous Computing, Bristol, UK.

18. Abowd G.D. and E. D. Mynatt (2000) Charting Past, Present and Future Research in Ubiquitous Computing.
ACM Transactions on Computer-Human Interaction, Special issue on HCI in the new Millenium, Vol 7(1),
pp 29-58.

19. Cheverst K., N. Davies, K. Mitchell and P. Smith (2000) Providing Tailored (Context-Aware) Information
to City Visitors, Conference on Adaptive Hypermedia and Adaptive Web-based Systems, Trento.

20. Lesser V., M. Atighetchi, B. Benyo, B. Horling, A. Raja, R. Vincent, T. Wagner, P. Xuan and S. XQ. Zhang
(1999) The Intelligent Home Testbed, Autonomy Control Software Workshop.

21. Gellersen H.W., M. Beigl and H. Krull (1999) The MediaCup: Awareness Technology embedded in an
Everyday Object, Symposium on Handheld and Ubiquitous Computing, Karlsruhe, Germany.

22. Pascoe, J., “Adding Generic Contextual Capabilities to Wearable Computers”, In the Proceedings of the 2nd
IEEE International Symposium on Wearable Computers (ISWC'98), pp. 92-99, Pittsburgh, PA, IEEE.
October 19-20, 1998.

23. Schmidt, A., Beigl, M. and Gellersen, H. W., “There is More to Context than Location”, In Interactive
Applications of Mobile Computing, Rostock, Germany, 24-25, November 1998.

24. Chen, D., Schmidt, A., Gellersen, H.W., “An Architecture for Multi-Sensor Fusion in Mobile
Environments”, In Proceedings International Conference on Information Fusion, Sunnyvale, CA, USA, July
1999.

