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Abstract
Supporting continuous sensing applications on mobile

phones is challenging because of the resource demands of
long-term sensing, inference and communication algorithms.
We present the design, implementation and evaluation of the
Jigsaw continuous sensing engine, which balances the per-
formance needs of the application and the resource demands
of continuous sensing on the phone. Jigsaw comprises a set
of sensing pipelines for the accelerometer, microphone and
GPS sensors, which are built in a plug and play manner to
support: i) resilient accelerometer data processing, which al-
lows inferences to be robust to different phone hardware, ori-
entation and body positions; ii) smart admission control and
on-demand processing for the microphone and accelerome-
ter data, which adaptively throttles the depth and sophistica-
tion of sensing pipelines when the input data is low quality or
uninformative; and iii) adaptive pipeline processing, which
judiciously triggers power hungry pipeline stages (e.g., sam-
pling the GPS) taking into account the mobility and behav-
ioral patterns of the user to drive down energy costs. We
implement and evaluate Jigsaw on the Nokia N95 and the
Apple iPhone, two popular smartphone platforms, to demon-
strate its capability to recognize user activities and perform
long term GPS tracking in an energy-efficient manner.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

tems]: Real-time and embedded systems

General Terms
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1 Introduction
Today’s mobile phones come equipped with an increas-

ing range of sensing, computational, storage and commu-
nication resources enabling continuous sensing applications
to emerge across a wide variety of applications areas, such
as, personal healthcare, environmentalmonitoring and social
networks. A key challenge of continuous sensing on mo-
bile phones is to process raw sensor data from multiple sen-
sors (e.g., accelerometer, microphone, GPS, gyroscope, dig-
ital compass, camera) and compute higher level inferences
and representations of human activities and context – pos-
sibly in real-time and communicate these higher level infer-
ences to the cloud. Early examples of continuous sensing
applications for the phone are emerging. UbiFit [7] uses ac-
celerometer data to recognize human activities, monitoring
the amount of exercise by an individual and using an unob-
trusive ambient display on the phone to encourage appropri-
ate changes in levels of exercise. PEIR [19] uses inferences
such as the user’s transportation modes to produce personal-
ized environmental impact reports that track how the actions
of individuals affect their exposure and contribution to en-
vironmental problems such as carbon emissions. CenceMe
[16] uses the phone’s accelerometer and microphone to in-
fer the user’s activity and social interactions and update their
sensing presence on online social networks such a Facebook
and MySpace.
Continuous sensing applications require careful resource

management in order to facilitate long periods of data col-
lection and processing. For example, data should be able
to be collected for a complete recharge cycle, while leaving
enough energy for the phone to still operate as a phone –
that is, to make calls, text, read email, surf the web. Mobile
phone sensing also requires that the inferences are robust to
various mobile phone context. For example, classifiers must
be able to withstand a person placing the phone at different
body positions and cope with a wide variety of noisy sensor
inputs that occur when people use their phones in different
real-world scenarios. Sensors react differently under differ-
ent conditions, for example, the microphone is robust to the
phone being placed at different body positions while the ac-
celerometer is not. In addition, each phone sensor has spe-
cific tradeoffs largely based on the nature of the data it sam-
ples. For example, accelerometer data is fairly inexpensive
to process, compared to the microphone data which typically
has a much higher sampling rate and is computational costly



to analyze. Recently, researchers have been challenged to
build mobile phone sensing systems that are both robust and
resource efficient [16, 29]. To date, the majority of mobile
phone sensing systems are stovepipe solutions which attempt
to address these challenges but in a very application specific
way.
In this paper, we present Jigsaw, a continuous sensing en-

gine for mobile phone applications which require continuous
monitoring of human activities and context. By developing a
reusable sensing engine and proposing application agnostic
techniques, we allow Jigsaw to be both resilient and energy-
efficient. It uses sensor-specific pipelines that have been de-
signed to cope with the individual challenges presented by
each sensor. The techniques we develop are not tied to any
specific application but are based on studying the specific
problems that arise in mobile phone sensors and phone us-
age patterns.
Jigsaw operates entirely on mobile phones and does not

require the use of an external server to perform any part of
its operation. Jigsaw implements the following techniques
as part of its continuous sensing engine on the Apple iPhone
and Nokia N95: i) resilient accelerometer data processing al-
lows inferences to be robust to different phone hardware, ori-
entation, and body positions; ii) smart admission control and
on-demand processing for the microphone and accelerome-
ter data adaptively throttle the depth and sophistication of the
pipelines when the input data is low quality or uninformative,
and iii) expensive pipeline stages (e.g., audio activity classifi-
cation, sampling from the GPS) are triggered judiciously and
are adaptive to the human behavioral patterns. More specif-
ically, new approaches to calibration of the accelerometer,
classification of activities that are independent to the position
of the phone on the body, and filtering of extraneous activi-
ties andmovements are proposed as part of the accelerometer
pipeline. The microphone pipeline proposes new approaches
that drive down the computational cost of sensing and clas-
sification of sound activities while sacrificing as little accu-
racy as possible. Techniques embedded in the microphone
pipeline reduce redundant classification when the sound type
does not change over certain timescales and short circuits
pipeline computation for common but distinctive classes of
sound that are observed. Finally, we design a smart GPS
pipeline that uses learning techniques and drives the duty cy-
cle taking into account the activity of the user, energy bud-
get, and duration over which the application needs to oper-
ate – the pipeline automatically regulates the sampling rate
to minimize the localization error. We believe the flexibil-
ity and adaptability of Jigsaw makes it suitable for a wide
range of emerging continuous sensing applications for mo-
bile phones.
The remainder of the paper has the following structure.

Section 2 describes the challenges and related work of ro-
bust and energy-efficient classification using the three sen-
sors (accelerometer, microphone, and GPS). In Section 3,
we describe the Jigsaw architecture and algorithms. Section
4 provides our prototype implementation. Section 5 presents
a detailed evaluation of the system. Section 6 provides two
proof-of-concept sensing applications built on top of the Jig-
saw engine. And Section 7 concludes.

2 Design Considerations
In this section, we discuss the design considerations that

underpin the development of Jigsaw’s sensing, processing,
and classification pipelines for three of the most common
sensors found on mobile phones today; that is, accelerome-
ter, microphone and GPS.

2.1 The Accelerometer Pipeline
The energy cost of sampling the accelerometer is not pro-

hibitive and neither is the required computation. The only
technical barrier to performing continuous sensing using the
accelerometer is the robustness of inferences.
Figure 1 demonstrates the difficulty in achieving robust-

ness with accelerometer inferences. In this experiment, the
time series output of an accelerometer-based activity classi-
fier is shown, which is trained from data collected from a
phone carried in the front pocket of a pair of jeans. Initially,
the phone is in the user’s pocket while the person is cycling,
and the inferences are fairly accurate. Midway through the
experiment the user receives a phone call, causing notice-
able but understandable temporary misclassification. After
the phone call, the user puts the phone in his backpack. For
the remainder of the experiment the classifier performance
is significantly degraded. Figure 2 helps explain the result
of Figure 1 in more detail. It shows sampling during cy-
cling from the accelerometer when the phone is in the user’s
backpack and front pocket. Note, when the phone is in the
backpack the raw data simply captures artifacts of vibration,
while the data from the front pocket clearly shows a cyclic
pattern. If a classifier is trained with data from one body
position, it will struggle to recognize the activity when the
phone is placed in other body positions different from where
the training data is sourced.
This experiment demonstrates two distinct types of the

robustness problem, one associated with the body position
and the other associated with errors that occur during tempo-
rary states, such as, taking the phone out of pocket, which
interrupt an on-going activity (e.g., cycling). We refer to
these temporary states as extraneous activities, which we
more formally defined as activities driven by user interac-
tions with the phone that are unimportant to the application
performance such as texting or making a phone call. De-
spite the large amount of prior work that uses accelerom-
eters for physical activity recognition [5, 11, 23, 24], none
developed techniques to counter extraneous activities, which
degrade the robustness of inference when performing con-
tinuous sensing on mobile phones. In addition, prior work
does not address pipeline techniques to cope with changing
body positions, although some (e.g., [5,16]) researchers have
measured the negative effects of changing position.
The Jigsaw accelerometer pipeline counters extraneous

activities by recognizing: i) periods of user interaction with
the phone, (e.g., a user texting); and ii) transition states such
as standing up or picking up the phone. Jigsaw does not
require the phone to maintain any particular body position
and inference accuracy remains consistently high even when
the body position changes, as discussed in Section 5.1. Jig-
saw addresses this challenge by using i) orientation indepen-
dent features rather than only magnitude that is used in exist-
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Figure 1: Activity inferences are inaccurate
when the phone is in a backpack and the
model was trained for a front pocket.
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Figure 2: Accelerometer samples of
cycling while the phone is (A) in the
pant pocket, (B) in the backpack
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Figure 3: GPS Power Profiling of N95

ing systems such as [16, 24]; ii) one-time device calibration,
which can be transparent to the user; and iii) classification
techniques where activities are modeled by splitting them
into several sub-classes, each of which is tied to particular
body positions; for example, the same activity class (e.g., cy-
cling) is partitioned based on body positions (e.g., a class for
upper body positions and a class for lower body positions).
Collectively, in a natural way these design techniques allows
the user to use the phone in natural way because Jigsaw is
able to intelligently adapt itself to different context.
2.2 The Microphone Pipeline
The difficulties of continuous sensing with the micro-

phone pipeline are due to resource efficiency. The micro-
phone generates data at a much higher sampling rate than
other sensors and places a heavy burden on the computa-
tional resources of the phone. We demonstrate the high CPU
burden of a microphone pipeline by performing an experi-
ment on an Apple iPhone using a relatively low audio sam-
pling rate of 8 kHz. We first perform a baseline measurement
and find the average CPU load when playing a 256kbpsAAC
music file is 8% with a range of 3-15%. In comparison, the
CPU load for signal processing and feature extraction is 6%
on average. During classification using a Gaussian Mixture
Models (GMM) classifier, the CPU usage rises to 22%, as-
suming 10 different sound types are classified. The CPU load
increases as the number of sound classes increase; for exam-
ple, when 20 different sound classes are supported the CPU
load is 36%. The number of classes supported by a single
phone will likely rise as applications become more sophisti-
cated or when multiple applications use the Jigsaw engine.
It is clear that these CPU usage numbers are too high for

a continuous background process which needs to have min-
imal impact on the primary operations of the mobile phone.
Existing microphone sensing systems [22, 26] avoid CPU
overhead by relying on remote servers; however, these sys-
tems still can not perform continuous sensing due to the en-
ergy burden of data transmission between the phone and the
cloud. While [16] performs classification on the phone, it
only detects one kind of sound – a single class. The Jig-
saw microphone pipeline is influenced by our prior work on
SoundSense [14]. However, SoundSense does not support a
classification pipeline for continuous sensing, rather, it ex-
plicitly focuses on the challenge of personalizing a generic
sound classification algorithm based on monitoring user be-
havior over time. In contrast to SoundSense, the Jigsaw
microphone pipeline does not attempt to learn new sounds.
Rather, it focuses on reducing the CPU load while sacrific-

ing as little robustness as possible. SoundSense only needs
to run a single audio classifier in the background whereas
the Jigsaw engine needs to support three pipeline processes
in parallel presenting a more demanding low power design
environment. The Jigsaw engine reduces the computation of
the microphone pipeline with an admission control and duty
cycle component that regulate the amount of data that enters
the microphone pipeline. The duty cycle is on-demand rather
than fixed, as in previous work [16,29]. Within the sound in-
ference stage of the pipeline two techniques are used: i) early
pipeline short-circuiting for common but distinctive classes
of sound; and ii) minimizing redundant classification opera-
tions when the sound type does not changed.
2.3 The GPS Pipeline
It is well-known that continuous sensing using GPS is

costly in terms of energy consumed due to sampling the
GPS [8, 10, 16]; for example, if we assume that the energy
budget of GPS is 25% [8] of the phone’s battery, the GPS
can only offer continuous GPS sensing for 2 hours using the
Nokia N95. It is possible to lower the sampling rate and in-
crease battery life to an acceptable level, but this sacrifices
sensing resolution. At low sampling rates the robustness of
the GPS pipeline (i.e., the accuracy of the location estimates)
starts to become highly sensitive to the mobility pattern of
the user. Accuracy becomes unpredictable in this case; for
example, the error associated with the same low sampling
rate can vary wildly from person to person depending on
their respective mobility patterns. Even for the same per-
son the error can vary dramatically due to changing mobility
pattens during a normal day.
The key technical challenge in performing continuous

sensing with the GPS pipeline is determining an optimal
schedule of sampling the GPS which minimizes the localiza-
tion error when possible. A common approach to this prob-
lem is to attempt to use a static duty cycle [16] or use pre-
computed duty cycles for different situations [28, 29]. How-
ever, no single duty cycle can be appropriate for all people
and devices, e.g., the best sampling schedule for the GPS for
a graduate student who spends most of the day sitting in a lab
is very different from a UPS worker who drives around a city
all day long. Another common approach is to make the duty
cycle adaptive by making runtime duty cycle schedule [10]
based on the sensed GPS data, or, using other sensors such
as the accelerometer [1, 18] to trigger GPS sampling when
motion is detected. However, these approaches still neglect
a number of important aspects that impact a schedule such
as the battery budget, hardware differences, or the actual re-



quired timing and duration for location estimates from the
application.
The Jigsaw GPS pipeline overcomes the limitation of

the high sampling cost of the GPS by learning an adap-
tive sampling schedule using a Markov Decision Process
(MDP) [9]. Jigsaw automatically adapts the GPS sampling
schedule to minimize the expected localization error. The
sampling schedule is adaptive to the mobility mode of the
user by leveraging real-time classification of activity. Using
movement detected by the accelerometer to switch the GPS
sensor on/off has been proven to be effective. Jigsaw uses
the user’s mobility mode to achieve finer grain control of the
GPS sampling. The sampling schedule is also adaptive to
the duration over which the application requires GPS sens-
ing, the remaining battery budget, and time lapse from the
start of an application. The Jigsaw GPS sampling strategy
optimizes the specific combination of mobility, sensing du-
ration, and hardware status (e.g., remaining battery budget)
and adapts when any of those factors changes. Note, that
although the current version of Jigsaw focuses on the GPS
sensor, the technique that Jigsaw uses is agnostic to the type
of location sensor and is therefore applicable to other types
of localization methods, such as, WiFi triangulation.
3 Jigsaw Detailed Design
In this section we describe the detailed design of the Jig-

saw continuous sensing engine. The Jigsaw architecture
comprises three classification pipelines that sit between the
application layer and hardware sensors; these are, the ac-
celerometer, microphone and GPS pipelines which are re-
sponsible for sampling, processing and classification of data
from the sensors. More specifically, the accelerometer and
microphone pipelines provide streams of inferences and the
GPS pipeline provides location estimates for applications
built on Jigsaw. Note, Jigsaw is designed to support one
or more applications at the same time on a mobile phone.
Applications can choose to use one or all of the pipelines
depending on the applications needs.
3.1 Accelerometer Pipeline Design
Figure 4 provides an overview of the processing stages for

the accelerometer pipeline. Raw accelerometer data is bro-
ken into frames. If necessary, a one-off calibration process is
initially applied before preprocessing occurs. During prepro-
cessing there are a number of internal stages, beginning with
normalization which converts the raw readings into gravita-
tional units (i.e., G) using device-specific parameters learned
during calibration. Normalized accelerometer data is pro-
cessed by admission control, where extraneous movements
of the phone are efficiently filtered out. We define extraneous
movements as transition movements that are unimportant to
the application performance such as taking the phone out of
a pocket or standing up. Admitted frames are passed to the
projection stage, which translates data into an orientation in-
dependent global coordinate system making any subsequent
processing insensitive to the phone orientation. The final
output of projection is fed to the feature extraction stage. The
extracted feature vector is then provided to the activity clas-
sification stage which recognizes five common physical ac-
tivities; these are, stationary, walking, cycling, running, and

 




























Figure 4: Jigsaw Accelerometer Pipeline

vehicle (i.e., car, bus). The activity classification stage uses a
split-and-merge technique to handle the different phone body
placement positions [21]. Finally, the stream of inferences
are then fed through a smoothing step. We now discuss each
of the stages in turn.
3.1.1 Calibration Stage
Calibration is a one-time process that determines offset

and scaling factors (i.e., sensitivity). The offset and scaling
factors are parameters required by the normalization stage,
which compensates for hardware variation and converts raw
samples into the standard G unit. Naive calibration meth-
ods involve pointing each axis of the device strictly up and
down to get the necessary positive and negative 1g readings.
However, it is difficult for untrained users to accurately per-
form this cumbersome and error-prone procedure. The Jig-
saw one-time calibration process can be either user driven or
fully transparent to the user. In the case of user driven cali-
bration, the user is asked to hold the phone still in several dif-
ferent directions which are not necessarily aligned with grav-
ity. The whole process usually takes less than one minute.
In the case of automatic calibration, the phone opportunis-
tically collects accelerometer samples whenever the phone
is determined to be stationary, for example, when the user
is sitting, taking photos, or the phone is placed on a table,
etc. Once sufficient samples are collected Jigsaw performs
the same computation as the user driven calibration to es-
timate the normalization parameters. During automatic cali-
bration the phone can be used normally by the user. Based on
our experience a comprehensive automatic calibration usu-
ally takes between one and two days, as discussed in Section
5. We now describe the Jigsaw calibration computation in
detail.
Let !a = (ax,ay,az) be a raw accelerometer reading, and

!g = (gx,gy,gz) be the actual acceleration along each axis in
G unit. Let Kx,Ky,Kz and bx,by,bz be the respective scaling
factors and offsets of the accelerometer. Subsequently,

gaxis = Kaxis ·aaxis+ baxis,where axis= x,y,z.
and we define a target function of:

f (Kx,Ky,Kz,bx,by,bz)!
√

g2x+ g2y+ g2z



If the accelerometer is stationary, f (·) = 1. A solution to
this parameter estimation problem is a least square estimator
based on linear approximation of function f (·) [13]. How-
ever, the method in [13] needs pre-calibration knowledge
about the sensor and uses a computationally intensive
recursive procedure. Without loss of generality, we set
the initial guess of parameters at (K,K,K,0,0,0), which
means all the scaling factors are K and offset is 0, since
by design the sensitivity for all axes are approximately the
same and the offsets close to zero. After taking linear ap-
proximation of f (·) around the initial point (K,K,K,0,0,0)
using Taylor expansion, we obtain a linear equation,

f (·)≈ a2x
‖!a‖ ·Kx+

a2y
‖!a‖ ·Ky+

a2z
‖!a‖ ·Kz+

ax
‖!a‖ ·bx+

ay
‖!a‖ ·by+

az
‖!a‖ ·bz = 1

Note that the above equation is not affected by the value of
K. Once a sufficient number of !a (i.e., accelerometer read-
ings sampled under stationary conditions) are obtained, the
parameters can be estimated by solving an over-determined
system using the linear least square estimator.

[

K̂x K̂y K̂z b̂x b̂y b̂z
]

= [ 1 1 1 ... 1 ] ·A · (ATA)−1

where N is the total number of static samples, [1 1 ... 1 ] is
an all-one row vector of length N, and A is the coefficient
matrix. Let !ai = (ax,i,ay,i,az,i) (i = 1, 2, . . . , N) be the ith
static accelerometer reading. The ith row vector of matrix A
is calculated by [ a2x,i

‖!ai‖
,
a2y,i
‖!ai‖

,
a2z,i
‖!ai‖

,
ax,i
‖!ai‖

,
ay,i
‖!ai‖

,
az,i
‖!ai‖

].
The linear least square estimator gives the optimal esti-

mate of the parameters. Error in this estimation will dimin-
ish with additional stationary readings made available. A
stationary state detector is used to select qualified !a (i.e.,
stationary accelerometer readings). Our stationary detector
begins by dividing raw data into candidate frames each con-
tain M successive samples. For each frame, the mean and
standard deviation are calculated for the three axes. If all
three standard deviations fall below a percentage threshold
σ of the mean, we assume the device is stationary and the
mean of the frame (mx,my,mz) is treated as a qualified !a.
The frame length M and threshold σ control the quality of
the candidates. LongerM and tighter σ will generate higher
quality candidates but less often. When qualified, the can-
didates usually only show constant gravity. However, there
are rare exceptions, e.g., the phone is in free fall, or in a con-
stantly accelerating vehicle. In these cases, the magnitude
of the mean (mx,my,mz) will be different from the majority
good candidates. Such outliers are filtered out.
3.1.2 Preprocessing Stage
Preprocessing takes a raw stream of accelerometer read-

ings and produces data that is projected into an coordinate
system that is independent of the mobile phone orientation,
filtering out extraneous activities and movements. These two
internal steps of filtering and projection within the prepro-
cessing stage result in increased robustness in accelerometer
inferences. The extraneous activities and movements filtered
out include: i) periods of user interaction with the phone,
(e.g., inputing a text message or browsing the web), and
ii) transition states, such as, standing up or picking up the

phone. Preprocessing applies the following internal steps in
the following order: normalization, admission control and
projection.
Normalization. Initially, accelerometer readings are used

to estimate the vertical direction (gravity) in the local co-
ordinate system. In [17], Mizell shows the mean of ac-
celerometer readings along each axis over a period of time is
a good estimate of the gravity direction. The same approach
is used here to estimate the gravity for each frame (128 sam-
ples, about 4 seconds) of accelerometer readings. The frame
length of 128 samples offers a good tradeoff between esti-
mation accuracy and latency. Each sample is converted to
unit G using the offset and sensitivity parameters provided
by the calibration process. The output of normalization is
normalized frame !ai = (xi,yi,zi), i= 1,2, . . . ,128. Its gravity
estimation is denoted by !g = (mx,my,mz), where mx,my,
and mz are means of their respective axes.
Admission Control. Extraneous activities and move-

ments are filtered from the incoming stream of frames using
different detection strategies. Extraneous movements (i.e.,
transition states) will alter the orientation of the accelerome-
ter with respect to gravity. Detection of these states requires
that Jigsaw tracks D, the absolute difference between two
successive frame’s gravity estimation, D= ‖!gnew−!glast‖. It
captures the change of sensor orientation. When D exceeds a
predefined value, θd , the frame is suspected to be an extrane-
ous movement event and skipped. The detection of extrane-
ous activities (i.e., user interaction), in contrast, is based on
Jigsaw monitoring mobile phone key presses or GUI events.
Frames are filtered out when any of these events occur during
sampling.
Projection. Projecting incoming data on to a global

coordinate system makes feature extraction insensitive to
changes in phone orientation. The projection on to a global
vertical (the gravity direction) and horizontal (perpendicular
to the gravity) directions is performed by Jigsaw as follows:
Let !vi and !hi denote the components in the global vertical
and horizontal direction. We know !hi lies on the horizon-
tal plane which is orthogonal to gravity. However, without
a compass it is impossible to get the absolute direction of!hi
using the accelerometer alone. We can calculate the length
of the !vi (denoted by vi) by the dot product, vi = !ai ·!g with
sign of vi indicating the direction. Using vi and !g allows us
to compute!hi simply by using!vi = vi×!g, !hi =!ai−!vi. Be-
cause the direction of !hi is not informative, we simply use
its magnitude ‖!hi‖, as the measure of horizontal movement
in our final coordinate space. These algorithmic calculations
are repeated for each !ai such that the output of preprocessing
is {(vi,‖!hi‖), i= 1,2, . . . ,128}, which is passed to the feature
extraction stage.

3.1.3 Feature Extraction Stage
There are 24 accelerometer features used in Jigsaw,

which present a combination of time-domain and frequency-
domain features, summarized in Table 1. Three time-domain
features are computed: mean, variance and mean-crossing
rate. In the frequency domain, all features are based on
spectrum analysis. Different activities have different energy



Time domain mean, variance, mean crossing rate
Frequency spectrum peak, sub-band energy,
domain sub-band energy ratio, spectral entropy

Table 1: Motion Feature Set

stationary
stationary sitting, standing, on the table

walking
lower body front and back pants pockets
in hand in hand when reading the screen, armband,

in hand when swinging naturally
all others jacket pocket, backpack, belt

cycling
lower body front and back pants pockets
upper body jacket pocket, armband, backpack, belt

running
running all body postions

vehicle
vehicle car, bus, light rail

Table 2: Activity Subclasses

distributions over the frequency spectrum. Walking usually
peaks around 1Hz, running at 2− 3Hz, whereas in vehicle
samples often contain more energy in high frequency bands
due to the vibration of the journey. The sampling rate of the
Nokia N95 accelerometer is about 32Hz. According to the
Nyquist sampling theorem, it can capture signal frequency
characteristics up to 16Hz. Based on these observations, we
carefully design the frequency features to differentiate the
target activities. We use the peak frequency as a feature. The
peak’s location indicates the dominant frequency of the ac-
tivity. The spectral entropy is a rough description of the fre-
quency distribution. If the distribution is flat, the spectral
entropy is high; if the distribution is peaky, its value is low.
Finally, spectrum sub-band energy is calculated on four fre-
quency sub-bands: B1(0,1], B2(1,3], B3(3,5], B4(5,16](Hz).
Three sub-band energy ratios, i.e., the ratio between B1 and
B2, B3 and B4, B1 ∪B2 and B3 ∪B4 are used to summarize
the energy distribution in low and high frequency ranges. All
these features are extracted from the projected data (vi,‖!hi‖),
12 features for each direction. Collectively, these features
form the 24-dimension feature vector used for activity clas-
sification.
3.1.4 Activity Classification Stage
Jigsaw partitions single activity classes into separate ac-

tivity sub-classes according to body positions (see Table 2).
This addresses the challenge presented by different body po-
sition and improves inference robustness, as discussed in
Section 2.1. For example, the walking and cycling activi-
ties, which suffer noticeably from the body position issue
are decomposed into three and two subclasses, respectively.
The split technique structures the training data set and then
builds the classifiers offline accordingly.
The output merge step happens at run time. The phone

performs inference based on the trained sub-class models
and merges the sub-class labels back to the original seman-
tic labels for the output. Although internally the classifier is
body-position sensitive, the final result hides this. For ex-
ample, the activity of cycling with the phone in your pants
pocket (lower body) or in a backpack (upper body) are classi-

fied separately; however, they both will report cycling. Since
the difference in performance of classification models is in-
significant (see Section 5.1), we choose the decision tree
classifier for its efficiency. We generate a tree of depth 7
using J48 learning algorithm provided by Weka [30], as dis-
cussed in Section 5.1. The last stage of the accelerometer
pipeline applies a lightweight sliding window smoother to
the classification output to filter out outliers.

3.2 Microphone Pipeline Design
The Jigsaw microphone pipeline is shown in Figure 5.

The stream of audio data from the microphone is divided
into frames by the preprocessing stage. During preprocess-
ing, the internal steps of admission control and duty cycling
are applied to dynamically regulate the resources used by the
pipeline. Following this the feature extraction stage extracts
a combination of features depending on the pipeline work-
flow; that is, either specific selected features for recognizing
human voice or more general purpose Mel-Frequency Cep-
stral Coefficients (MFCC) [32] features. The computational
bottleneck in the microphone pipeline is the activity classi-
fication stage, which uses GMM (Gaussian Mixture Model)
based classification to classify a number of different sound
types required by applications. This inference step is compu-
tationally intensive and shapes the remainder of the pipeline
design. Two techniques are built into the pipeline design to
compensate for this bottleneck. Jigsaw uses a voice classifi-
cation stage to determine whether a frame contains common
and easily identified sound classes using a very efficient yet
sufficiently accurate decision tree classifier. If the frame is
human voice then the activity classification stage is not re-
quired, saving pipeline computational resources. Otherwise,
the frame is forwarded to the activity classification stage.
An internal similarity detector step in the activity classifi-
cation stage eliminates redundant classification. It reduces
the workload when adjacent frames are of the same sound
class. It should be noted that this occurs frequently, for ex-
ample, when someone drives a car, a large number of frames
of the driving class go through the audio pipeline consec-
utively. In this case, the similarity detector compares the
incoming frame and previously classified frames based on
similarity of their features. If they are similar enough, the
prior label is directly used. The final stage is smoothing. We
now discuss each of these stages in turn.
3.2.1 Preprocessing Stage
The primary responsibility of preprocessing is to regulate

the resource usage of the microphone pipeline. Frames are
rejected if, for example, the phone is too muffled to capture
sound. In addition, the duty cycle of microphone sampling is
adapted based on the ambient environment. We now discuss
the three preprocessing steps; that is the framing, admission
control and duty cycling steps.
Framing. Preprocessing operates on a frame by frame

basis with each frame containing around 64 ms of audio
or 512 samples when sampling at the phone standard fre-
quency of 8kHz. Previous audio recognition work [6, 15]
uses overlapped frames of 25-32 ms in order to capture sub-
tle changes at the expense of computation. Jigsaw takes a
different approach where frames are longer and do not over-











































Figure 5: Jigsaw Microphone Pipeline

lap with each other. This significantly reduces the quantity
of frames required to be processed. Because the goal is to
recognize sound classes associated with human activities, a
longer frame length is useful to capture low frequency com-
ponents of activities.
Admission Control. Large chunks of silence or low vol-

ume frames often occur between sound activities. These un-
informative silences, which Jigsaw is designed to skip, usu-
ally are caused by a lack of sound events (e.g., it is late at
night, the user is away from the phone) or by an undesirable
phone context (e.g., muffled in the backpack or being located
at some distance from a sound source). The Jigsaw frame-
based admission control uses the intensity of the frame to de-
termine if a frame should be admitted or not. The intensity
is measured by the root mean square (RMS) [25], which is a
lightweight time domain feature. The use of intensity relies
upon thresholds which are chosen empirically for different
phones due to the different sensitivity of the built-in micro-
phones. In practice, the Nokia N95 records higher volume
audio than the iPhone 3G under the same conditions. In real-
world scenarios, once a daily activity begins there is a strong
tendency for it to continue. Therefore, if a frame passes ad-
mission control, all subsequent frames are accepted for the
next three seconds. There are common cases where there is
no acoustic event captured for a long period of time. When
this occurs, duty cycling of the microphone is applied.
Duty Cycling. During the periods of no acoustic events,

the optimal duty cycle of the microphone pipeline depends
on the application. However, a low duty cycle, such as one
frame per second (64 ms out of 1000 ms), is sufficient for
detecting many everyday activities. Jigsaw adapts the duty
cycle to save phone resources based on the behavior of ad-
mission control and optionally accelerometer based activity
inferences. Duty cycle adaption is achieved through decay-
ing the sampling frequency (i.e., increasing the sampling in-
terval), when no acoustic event is captured. Examples of
such scenarios include: when the user is sleeping, in a quiet
environment, or the phone is in a locker. The sampling rate

begins to increase once the level of human activity increases
(e.g., the person wakes up and picks up the phone for use).
A minimum duty cycle bounds how far the duty cycle is able
to be reduced and can be set by the applications.
3.2.2 Feature Extraction Stage
Jigsaw computes a variety of acoustic features, as shown

in Table 3. In the temporal domain, the low-energy frame
rate is used. All other extracted features are in the fre-
quency domain. To ensure the robustness of the microphone
pipeline under different conditions, the spectrum is normal-
ized and its DC component is removed before frequency
analysis. Therefore, the computed features are less sensi-
tive to the volume of the audio sample and thus reduce the
significance of the differences in microphone sensitivity and
phone position. Features are computed only on-demand, so
those frames which do not reach, for example, the activity
classification stage (e.g., frames that contain voice) will not
have any of the additional activity classification specific fea-
tures computed. Those features used by the voice classifi-
cation stage are computed with low-overhead yet have suf-
ficient discriminative power to distinguish human voice. A
frame that does not contain human voice will be processed
by the activity classification stage. In this case, more power-
ful and computationally expensive features are required – a
13 dimension Mel-Frequency Cepstral Coefficient (MFCC)
feature vector is computed which reuses the spectrum com-
puted earlier during the voice feature computation. Classi-
fication is not, however, performed directly on these frame
based features. In Jigsaw, the unit for classification is not a
single frame, which would be costly and unnecessary. Given
the goal of classifying sounds associated with human activ-
ities, which are likely to last at least for tens of seconds or
more, the unit of classification is a 20 frame classification
window (i.e., 1.28s). The low-energy frame rate is the ratio
of the frames whose energy are below 50% of the average
energy of all the frames in the classification window. The
mean and variance of each frame-based frequency feature
for all frames in the window are also used as features for
classification.
3.2.3 Voice Classification Stage
Other than silence, which is filtered during the admission

control stage of preprocessing (see Section 3.2.1), perhaps
the next most common class of sound people encounter is hu-
man voice. Voice classification is designed to perform class-
specific binary classification which recognizes classification
windows that contain human voices accurately and inexpen-
sively in terms of computational resources. This significantly
lowers the typical overhead of executing the Jigsaw micro-
phone pipeline, because voice is no longer processed by the
activity classifier, which is computationally expensive given
it performs general purpose classification and tries to pattern
match potentially dozens of different activity sounds. The
acoustic characteristics of voice are fairly unique [6] relative
to other classes of sound associated with specific human ac-
tivities. The voice classification stage uses a discriminative
approach that relies on a decision tree classifier. We train
the decision tree using the WEKA workbench [30] based
on features specifically selected for the classification task,
as shown in Table 3. Although the classifier consumes very



Category Feature set

voice
Spectral Rolloff [12],Spectral Flux [25]
Bandwidth [12],Spectral Centroid [12]

Relative Spectral Entropy [6]
Low Energy Frame Rate [25]

other activities
13 MFCC coefficient feature set [32]
Spectral Centroid [12],Bandwidth [12]

Relative Spectral Entropy [6]
Spectral Rolloff [12]

Table 3: Acoustic Feature Set

Category Activies Note
Voice reading, meeting, chatting, 10 female, 22

conference talks, lectures, male, 40 clips
street noise in city&high way, from multiple

Target crowd noise of job fair&party scenarios
sounds washing,brushing teeth 119 clips

vacuuming, shower, typing
walking, rain, wind, microwave

Other climbing stairs, toilet flushing 83 clips
sounds music, fan, plane, dish washer

elevator,clapping, white noise

Table 4: Description of the Data Set
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little resources to execute, it achieves classification accu-
racy (see Section 5) comparable to other classifiers [27, 31].
The sound data set we use is collected sporadically over a
nine month period using both the Nokia N95 and the Apple
iPhone. All the recordings are in mono, 8kHz, 16bit PCM
format. The sound categories are shown in Table 4. The
total amount of data is about 1GB. The data set is divided
into two non-overlapped sets, i.e., a training set (80%) for
training models and a test set (20%) for evaluation purposes.

3.2.4 Activity Classification Stage
The activity classification stage of the Jigsaw pipeline rec-

ognizes a diverse set of sound classes that are associated
with human activities (e.g., driving, washing hands). The
current Jigsaw prototype system detects the following sound
classes - each of which is closely related to a common ac-
tivity: brushing teeth, shower, typing, vacuuming, washing
hands, crowd noise, and street noise. However, the classifica-
tion stage is costly in terms of computation which increases
linearly with the number of sound classes being classified.
Therefore, the activity classification stage is a potential bot-
tleneck in the microphone pipeline, unless it is engaged in-
frequently. The internal design of the activity classification
stage uses a similarity detector to curb how often the com-
plete classification logic is used. In what follows, we discuss
how classification is done using a GMM classifier. We also
discuss how we limit the need to perform GMM classifica-
tion using our similarity detector.
GMM Classifiers. Jigsaw classifies sound using a naive

Bayes classifier with equal priors. The likelihoods are esti-
mated using Gaussian Mixture models (GMM), one for each
activity. GMMs are widely used in audio processing and
have proved to be effective [15, 27]. The class with highest
likelihood is statistically the most likely activity. However,
if the highest likelihood is too small, lower than the cut-off
thresholds θ of a class, the system still rejects it and reports
the sound as unknown (i.e., other sound). We use K-means
initialized expectation-maximization (EM) for training. The
K-means initialization makes the expectation-maximization
converge faster with more stability. Jigsaw supports both full
covariance matrices and simplified diagonal covariance ma-
trices for the Gaussian components of the GMM. The later
uses fewer parameters and reduces the computational com-
plexity at the cost of accuracy. A comparison of these two
approaches is discussed in Section 5. The likelihood thresh-
old θm of a particular sound class m is estimated using the
percentile cut-off of the likelihood of the training data. It
differentiates the sample that belongs to that category and
other unknown sounds. A higher cut-off percentile benefits

the precision of the classifier and decrease its recall and vice
versa. An appropriate tradeoff depends on application’s spe-
cific needs; for example, Figure 6 shows the change in preci-
sion and recall for the vacuuming sound using different cut-
off percentiles. We choose the cutoff at the 10th percentile
to balance precision and recall.
Similarity Detector. Human activities tend to have du-

rations on the order of ten seconds or more. Some activities,
such as, driving, walking down the street, taking a shower
last considerably longer. During these activities classifying
every frame is redundant because successive frames in the
stream of audio data are similar and all the classification
logic is repeated with the arrival of each new frame. The
similarity detector is designed to eliminate this redundancy,
allowing Jigsaw to dramatically reduce the workload of the
activity classification stage. The similarity detector exploits
the fact that frames from the same activity have similar fea-
ture vectors. By computing a similarity measurement, the
classification process can be skipped if the distance in this
metric is small enough. Once an activity sound is recognized
by the GMM classifier, the similarity detector stores the ac-
tivity label and the feature vector!xact . When the successive
feature vector !xnew arrives, it measures similarity using the
cosine distance,

distance= 1− !xact ·!xnew
‖!xact‖‖!xnew‖

If the distance is below a predefined threshold δ, it indicates
that the previous inference is still on-going. The previous
activity label is directly dispatched to the smoothing stage
(see below), otherwise, the classification operation is trigged
and the activity label and !xact are updated. By changing
the similarity threshold δ, we can control the rate at which
GMM classification is avoided. However, error may increase
if the similarity threshold is loosened too much. Keeping a
longer history of previously classified feature vectors can be
beneficial when the user switches back and forth between
several activities. However, in practice, even when storing
only one pattern, the similarity detector is able to save about
70% of the classification operations with a moderate 5% ac-
curacy penalty, as discussed in Section 5. Using the simi-
larity detector, Jigsaw substitutes costly classification with a
light-weight distance measurement. Note that as the number
of sound classes increases, the classification cost grows lin-
early, but the cost of distance calculation remains unchanged.
3.2.5 Smoothing Stage
Classification results can be noisy for a variety of rea-

sons; for example, the user is interacting with the device,
there is a sudden change in the ambient background sound,



or simply due to the dynamic nature of sound. A smooth-
ing step is therefore helpful in removing outliers. There are
sophisticated smoothing methods for audio processing, such
as the Hidden Markov Models (HMMs) used in [14]. How-
ever, these models are computationally demanding if the to-
tal number of sound categories needed by applications is
large, and they need to be retrained every time a new sound
category is added. As an alternative approach, we apply a
very simple sliding window smoother on the classification
output. It is computationally lightweight, insensitive to the
number of the activity classes, and still provides a perfor-
mance boost, as discussed in Section 5.
3.3 GPS Pipeline Design
Jigsaw uses the inferences obtained from the accelerom-

eter pipeline to provide a real-time adaptive GPS duty cycle
based on the actual mobility patterns of the user. The basic
intuition here is that in order to reduce the energy consump-
tion and keep a low localization error, activities associated
with faster speed need a higher GPS sampling rate and vice
versa. We model this problem as a discrete-time Markov
Decision Process (MDP) to learn the optimal GPS duty cy-
cle scheme. We encode the following attributes in the model:
the GPS battery budget, an expectation of the duration that
the application tracks a user, and the user’s mobility pattern.
The goal of the optimization process is to learn the best duty
cycle policy for spending the given battery budget over the
tracking duration according to the user’s runtime mobility
level provided by the accelerometer pipeline and the remain-
ing battery budget level. We now describe our MDP formu-
lation:
The Markov decision process [9] is represented as a four-

tuple (S,A,P,R), where S is the state space, A is the action
space (i.e., different GPS duty cycles), Pa(s,s

′
) = Pr(s j =

s′ |si = s,ai= a) is the transition probability that executing an
action a in state s leads to the next state s′ , and R(a,s) is the
reward function for performing action a in state s. A policy
π is a mapping from S to A that determines an action for
every state s ∈ S. The quality of a policy is indicated by the
expected sum of total future rewards, which are discounted
to ensure convergence. γ is the discount rate and satisfies 0<
γ ≤ 1. The value of a state s under policy π is the expected
sum of the discounted rewards by following policy π from s,
defined as,

Vπ(s) = R(a,s)+ γ∑s′ Pπ(s)(s,s
′)Vπ(s′).

If all the parameters in the MDP are known, the optimal pol-
icy is computed by solving the Bellman Equation:

V (s) =max
a

(

R(a,s)+ γ∑s′ Pa(s,s
′)V (s′)

)

The Bellman equation can be solved using the Policy Itera-
tion algorithm [9].
In our model, the composite state is,

si = (maccel(i),egps(i), ti) ,1≤ ti ≤ T
where maccel is the inference from the Jigsaw accelerome-
ter pipeline, egps is the remaining GPS energy budget, t is
the current time index (time tick in the total sensing dura-
tion), and T is the total number of time ticks. In the above
discrete-time model, the total amount of time Ts (seconds) is

quantized into T time ticks evenly such that each time tick
takes ts = Ts/T seconds. The time tick is set as a dimension
of the composite state so that the learned policy changes ac-
cording to time index, because the same battery level at a
different time point could mean a totally different thing, e.g.
50% battery left is really bad in the early morning, but is
abundant in the early evening. The time tick transition is
strictly increasing by one in each tick and modeled as a de-
generate Markov chain,

P(t j|ti) =

{ 1 if ti = t j = T
1 if t j = ti+ 1
0 otherwise

The activity inference maccel takes four values based on the
motion speed: 1=stationary, 2=walking, 3=running or cy-
cling, and 4=in vehicle. The state transition probabilities,

{P(maccel( j) = k|maccel(i) = l) ,1≤ k, l ≤ 4}
can be learned from activity traces. We distinguish work-
days and weekends and use two distinct transition matrixes,
because the user’s mobility patterns are typically different
during workdays and weekends.
The action space A is a set of predefined GPS sampling

rates. We use six sampling actions
A= {a|sample every interval(a) time units,1≤ a≤ 6} .

where interval(a) is the sampling interval. The GPS re-
ceiver usually takes a while to lock on to a satellite signal
when switched on, and it has a significant turn-off lag (e.g.,
the power-off delay for GPS is about 30 seconds on Nokia
N95 [10]). Thus, the power consumption of a sampling in-
terval lower than 45 seconds is almost identical to continu-
ous sampling. Therefore, we use 6 sampling rates. For a
= 1, 2 . . ., 6, the sampling interval, interval(a), is 20min,
10min, 5min, 2min, 1min, 5s (GPS always on), respectively.
An action with a higher index uses a faster sampling rate
and thus consumes more energy. egps(i) is the amount of re-
maining GPS energy budget. We divide the total energy bud-
get E(Joule) assigned to GPS sensing into L levels linearly
and thus each energy level contains E0 = E/L (Joule). Let
{power(a),a ∈ A} be GPS energy consuming rates (power)
over different sampling intervals {interval(a),1 ≤ a ≤ 6},
which are obtained from energy profiling. The transition
probability of the energy consumed by GPS sensing from
level l to l+ 1 are calculated as:

p(a) = power(a) · ts/E0, a ∈ A.
The probability p(a) is proportionally higher for faster sam-
pling rates and lower for longer sampling interval. We model
the transition probability of egps(i) as a function of GPS sam-
pling rate a ∈ A, such as,

Pa (e( j)|e(i)) =











1 if e(i) = e( j) = 1
1− p(a) if e(i) = e( j) = l, l *= 1
p(a) if e( j) = e(i)− 1
0 otherwise

where ’gps’ subscript for e(·) is omitted. The activity infer-
ence maccel(i), the energy state egps(i), and time tick ti are
independent to each other. Therefore, the overall composite



state transition probability can be defined as,
Pa(si,s j) =

P(maccel( j)|maccel(i)) ·Pa (egps( j)|egps(i)) ·P(t j|ti)
The reward function depends on the sampling action and the
activity inference. There is a penalty if the budget depletes
before the required duration T . We define

R([(maccel(i),egps(i), ti) ,a]) =
{

−Rnopower if egps(i) = 1, ti < T
km · f (maccel(i),a) otherwise ,

where km is a reward adjustment coefficient depending on
the motion speed and f (maccel(i),a) is the reward of taking
action a when the user is in activity inference maccel , usually
defined as,

f (maccel(i),a) = maccel(i) ·a(1 ≤ a≤ 6).
The reward function reflects the tradeoff between energy
and localization error. A higher duty cycle is more accu-
rate and generates more rewards in one time tick, particu-
larly when the maccel is also high. However, it also drains
the battery quickly, if the battery budget runs out before the
required sensing duration with all the following steps suf-
fering penalties. The model is design to maximize the to-
tal reward. Greedily maximizing current reward is unwise.
The MDP learning algorithm finds the optimal balance be-
tween the current action reward and potential future reward
according to the knowledge of the user’s activity inference
transition pattern. Once the system is modeled, the policy
iteration algorithm [9] is applied to learn the statistically op-
timal duty cycling policy. The output is a three dimensional
table. For each state, denoted by a tuple (activity inference,
remaining energy budget level, time tick), there is a corre-
sponding sampling rate policy. The table is stored on the
mobile phone. Using the table is straightforward and com-
putationally lightweight. During runtime Jigsaw keeps track
of the time tick, remaining energy budget, and the activity
inference from the accelerometer pipeline. It then does a ta-
ble lookup to find the optimal duty cycle for GPS sampling.
This is an efficient duty cycle mechanism that is tailored to
the mobile phone and adaptive to the user’s behavior.
4 Implementation
We validate the Jigsaw design with prototype implemen-

tations on the Apple iPhone and the Nokia N95. The signal
processing and classification algorithms are approximately
2000 lines of C code. Other components (i.e., GUI, sensing)
are written in the native languages for each platform, specif-
ically Objective C [2] for the iPhone and Symbian C++ [20]
for the N95. The software architecture of the Jigsaw imple-
mentation is shown in Figure 7. Jigsaw uses a 32Hz sam-
pling rate for the accelerometer and streams 8 kHz, 16-bit,
mono audio from the microphone. The Nokia N95 provides
direct access to the GPS sensor, but the iPhone uses a hy-
brid localization scheme using WiFi triangulation and GPS,
and developers have no way to select the sensor via APIs.
Consequently we benchmark and evaluate the Jigsaw GPS
pipeline primarily on the N95. Jigsaw is implemented as a
background service for the Nokia phone, such that multiple
applications can use it at the same time. Under the current

iPhone SDK [3], creating a daemon service is not yet al-
lowed, therefore Jigsaw is implemented as a library for the
iPhone. As shown in Figure 7, sensing and processing are in
separated threads. The processing threads awake only when
data is ready. Circular buffers and semaphores ensure contin-
uous and asynchronous operations. On the iPhone, threads
are all standard POSIX threads. On the N95, all process-
ing threads are Symbian threads, and the sensing threads are
actually Symbian Active Objects [20] for efficiency.
The Jigsaw system is extensible by design. The APIs

allow access to different pipeline components for applica-
tions to directly use individual components or to add new
features/classifiers beyond the default set. Currently the Jig-
saw system exposes three basic sets of APIs to access the
output of three main stages of classification pipelines, i.e.,
the preprocessing, the feature extraction, and the classifica-
tion results. For example, our demo application Greensaw
(see Section 6) utilizes the accelerometer pipeline for calorie
expenditure calculation. The application first examines the
classification result. If the activity is stationary or in vehi-
cle, then only the resting energy expenditure is accumulated.
If the activity is walking or running, data acquired from the
preprocessing API is fed into a step counter, which is used
to compute the activity calorie consumption combining with
the user’s height and weight. There are two classifier op-
tions for the accelerometer, a decision tree classifier and a
multivariate gaussian classifier (see Section 5.1). For audio
pipeline, both the full covariance GMM and diagonal co-
variance GMM are supported. Model parameters are stored
in configuration files to allow customization. For example,
application developers can add labels and parameters (i.e.,
mean, covariance and cut-off threshold) of GMM models to
support new sound classes.
We design the Jigsaw prototype to optimize for CPU us-

age at the expense of a larger memory footprint. When it
is possible we pre-compute values offline and store these as
files on the phone. For example, for the audio classification
pipeline, the GMMmodels directly use the inverse and deter-
minant of covariance matrix as the parameters. We compute
Σ−1 and |Σ| offline instead of using Σ itself. Table 5 shows
the runtime benchmark of the accelerometer pipeline. It
takes approximately 5ms to process 4 seconds of accelerom-
eter data. The CPU usage for the iPhone (with a simple
GUI) is about 0.9% ∼ 3.7%. For the Nokia N95, the CPU
usage is about 1∼ 3% and the power consumption is about
38mw measured using the Nokia energy profiler [20]. Table
6 shows the runtime benchmark for the audio classification
pipeline. The GMM results represent the total runtime for 7
activity GMMs in our prototype implementation. If a sound
event is detected, the frame based feature extraction takes
approximately 3.5ms for each admitted frame. The window
based features are extracted in the 1.28s classification win-
dow and then classification takes place. Even when the full
pipeline is engaged, every 1.28s sound signals only take ap-
proximately 100ms to process. When active, the CPU usage
is approximately 6% ∼ 15% for iPhone and 7% ∼ 17% for
Nokia N95 and dependent on the workflow of the pipeline.
The power consumption on the N95 under this condition is
approximately 160mw.
























































Figure 7: Jigsaw Software Architecture

Stage time(ms)
iPhone N95

normalization 0.19 0.16
admission control 0.10 0.08
projection 0.53 0.65
feature extraction 3.56 4.21
classification <0.01 <0.01

Table 5: Accelerometer Runtime
Benchmark

Stage time(ms)
iPhone N95

(i) sound detection 0.41 0.36
(ii) feature extraction 3.29 3.44
(iii) voice classification 0.01 0.01
(iv) similarity measure 0.02 0.02
(iv) classification with 10.04 10.43full cov GMM
(iv) classification with 4.55 4.76diagonal cov GMM

Table 6: Audio Runtime Benchmark

Accuracy w/o Split&Merge(%) Accuracy with Split&Merge(%)
DT MG SVM NB DT MG SVM NB

cycling 82.62 82.41 86.60 77.45 92.05 90.07 92.88 90.87
vehicle 92.87 93.80 93.52 83.59 90.52 87.47 90.29 89.83
running 98.11 97.18 97.40 98.37 98.01 97.40 98.03 97.30
stationary 94.25 96.81 97.48 94.99 95.19 98.07 97.68 96.19
walking 90.35 91.89 93.90 88.55 96.81 97.04 96.66 95.17
Average 91.64 92.42 93.78 88.59 94.52 94.01 95.10 93.87

Table 7: Classifier Accuracy with and w/o Split and Merge

lab manual automatic
Scalex 305.10 303.88 303.78
Scaley 299.60 295.48 299.44
Scalez 296.42 295.48 297.08
Of f setx 2.06 13.63 24.50
Of f sety 2.70 14.47 25.54
Of f setz 3.70 16.88 26.64

Table 8: Parameter Estimated
by Three Calibration Methods Figure 8: Auto Calibration

Samples

5 Evaluation
In this section, we present the detailed performance eval-

uation of the Jigsaw pipelines. For the accelerometer, we
collect a data set from 16 people including 12 males and 4
females. For each subject, the data is collected frommultiple
sessions in natural settings. No researcher follows the sub-
ject during the data collection. Each participant is asked to
carry multiple phones in different body positions and anno-
tate the beginning and the end of the activities they perform.
A separate phone works as a remote to control all the sensing
phones via bluetooth and collect user inputs. The data set is
split into two parts, half of the data set is used as the training
set and the other half as the test set. For audio, we use the
test data set introduced in Section 3.2.3. We benchmark the
GPS pipeline on the Nokia N95, because it efficiently sup-
ports the background process and the Nokia energy profiler
utility is convenient and accurate.

5.1 Accelerometer Pipeline Results
Table 8 shows the calibration parameters carefully ob-

tained during: i) a controlled lab experiment, ii) user driven
calibration, and iii) automatic calibration. In user driven cal-
ibration, we use a 2 second frame length and the threshold
σ = 2%. The user is requested to generate 12 samples of
different orientations. For automatic calibration, a N95 is
carried for 1 day and the threshold is set to σ = 3%. The
candidate samples collected by the automatic method are vi-
sualized in Figure 8. The samples scatter around the sphere
with 1G radius and roughly cover all 3 axes, which ensure
the high quality of estimated parameters. The user manual
calibration that requires the user’s attention outperforms the
automatic one. We test both calibration methods over a 80
sample test set containing only static readings of 1G in dif-
ferent orientations. For N95, the error is up to 1.1% for the
manual calibration and up to 2% for the automatic one. The
average calibration errors are 0.55% and 0.76%, respectively.

actual\output voice other
voice 0.8535 0.1465
other 0.0408 0.9592

Table 9: Confusion Matrix for the Voice Classifier

We repeat the automatic calibration experiment with Apple
iPhone 3G, the average error is 0.58%, slightly better than
N95. In practice, the iPhone accelerometer data is not as
noisy. Moreover, the N95 only has a few applications us-
ing the device in landscape mode, resulting in less candidate
samples in that orientation. For the iPhone, the user gener-
ates more qualified data in the landscape mode when brows-
ing the web or using other applications.
We evaluate the classification accuracy with and with-

out the split-and-merge process, as shown in Table 7. Four
commonly used classifiers, Decision Tree (DT), Multivari-
ate Gaussian Model (MG), Support Vector Machine (SVM),
and Naive Bayes (NB) are compared. For all the classifiers,
the split-and-merge process increases the average accuracy,
particularly, for the Naive Bayes classifier. The major accu-
racy improvement is seen in the cycling and walking activi-
ties, which are divided into multiple subclasses, as shown in
Table 2. Although our overall result slightly underperforms
previous work (e.g. [24] reports 95% accuracy), we use only
the accelerometer sensor (GPS is used in [24]) and place no
restriction on the device orientation or body position.
5.2 Microphone Pipeline Results
Table 9 shows the confusion matrix of the first level voice

classifier. A three classification result (3.84s) smoothing
window is applied. The recall of voice frames is 85.35%. Al-
though it is not as high as the 90% achieved by more sophis-
ticated and demanding voice detectors, e.g., [6], it still per-
forms well considering its lower resource consumption. The
performance comparison of the full covariancematrix GMM
model and diagonal covariance matrix GMMmodel over the
seven activities is shown in Figure 10 and Figure 11. Gener-
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ally speaking, the full covariance GMM model slightly out-
performs the diagonal covariance one in both metrics with an
average improvement of 2.98% for precision and 3.47% for
recall. However, its runtime is more than double the diagonal
one which is more suitable for mobile phones. The precision
of the typing activity classification is approximately 60% for
both classifiers. The typing sound, for example, is more dy-
namic than other activity sounds. The pace and intensity of
key strokes vary greatly even for the same person, making
it hard to be characterized accurately by the GMM model.
The model misclassified typing in some cases, for example,
when in fact the phone carried in the pocket or backpack hits
against keys or other objects.
To evaluate the efficiency increase due to the similarity

detector mechanism, we examine the tradeoff between accu-
racy and classification when operations/stages are skipped. It
takes approximately 10 ms to run the 7-activity GMM classi-
fiers, whereas the similarity measure only requires 0.02ms to
compute. Figure 9 shows the tradeoff between the accuracy
and the percentage of GMM classification saved. As the sim-
ilarity threshold increases more GMM classification opera-
tions are skipped and as a result the accuracy of the activity
classification is reduced. From the plot it can be observed the
accuracy tradeoff ranged from 84% when 4% of the GMM
classification is skipped to 60% when 88% is skipped. Even
when 73% of computationally expensive GMM operations
are skipped, the penalty on the accuracy of the activity clas-
sification is only 5%. This is an important result that makes
low energy microphone pipelines viable. Note that the clas-
sification accuracy drops off quickly when 80% of the oper-
ations are saved due to the overly loose similarity threshold.
5.3 GPS Pipeline Results
To evaluate the Jigsaw GPS pipeline, we collect traces

of activity inferences and traces of GPS coordinates during
weekdays and weekends. The activity inference traces are
generated by Jigsaw’s accelerometer pipeline. The location
traces are recorded using a 1 second GPS sampling inter-
val. We compare the Jigsaw MDP based adaptive GPS duty
cycle scheme, an accelerometer augmented GPS duty cycle
scheme, and several fix duty cycle schemes using the traces.
With the accelerometer augmented scheme, the GPS is sam-
pled every 10 s when there is movement (i.e., the variance
of accelerometer samples is over a threshold), and suspend
sampling when there is no movement. The sampling inter-
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vals of the fix duty cycling schemes are {5 s, 1 min, 2 min,
3 min, 4 min, 5 min, 10 min, 20 min}. The Jigsaw GPS
pipeline requires activity inferences as input. Table 10 shows
the distribution of activity states in the data set. The most
dominant activity is stationary during the weekdays while
other activities increase during weekends. Although no user
rode a bike during the data collection phase, we still observe
some cycling inferences in the trace due to the misclassifica-
tion of walking or vehicle activities.

stationary walking running cycling vehicle
weekday 77.3% 10.5% 0.6% 0.4% 11.2%
weekend 38.1% 37.7% 1.8% 0.1% 22.3%

Table 10: Mobility State Distribution in Location Traces

For comparison purposes, the average location errors of
all schemes are calculated. Location error is defined as the
the mean of euclidian distance between the actual location
from the continuous sampling ground truth and the location
reported by the different schemes – note, we use the same
fixed duty cycles reported in [8]. Intuitively, higher sam-
pling rate schemes consume more energy and have a lower
location error and vice versa. The location error and energy
efficiency of different fixed duty cycle schemes are shown
in Figure 12 and Figure 13 – for the weekday and week-
end traces, respectively. In the MDP model, the GPS power
budget is set to 25% of N95 phone battery capacity and the
sensing duration is set to 10 hours. The total energy budget is
discretized into 20 levels and the total duration is discretized
into 300 time ticks. As discussed in Section 3.3, the action
space contains 6 sensing actions with different sensing inter-
vals, and the state transition matrix of the defined four MDP
mobility levels is learned from the motion traces. Figure 15
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Figure 12: Error vs. Power Tradeoff of
Weekday GPS Traces
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Figure 13: Error vs. Power Tradeoff of
Weekend GPS Traces
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Figure 14: Jigsaw Emulated on a
Weekend Trace

visualizes the learned GPS sampling policy for the weekend
traces at three different time ticks (0, 150, 290). The pol-
icy changes with the mobility level, energy budget level, and
time tick. The mobility level is the dominant factor. When
stationary, the system always uses the lowest sampling rate.
As the energy budget drains, the system lowers the sampling
rate. When the time tick approaches the end of the sensing
session, the system tends to choose higher sampling rates to
spend the remaining budget. Figure 14 shows the GPS duty
cycles for one of the weekend traces. The motion sequence is
smoothed by a one minute moving window for clearer visu-
alization. The GPS duty cycle changes along with the user’s
activity inferences. When the energy budget level is high, the
system uses higher sampling rates. As the energy drains, af-
ter time tick 50, the sampling policy for walking is lowered.
But for the vehicle activity inference with a high associated
speed, it still uses a higher sampling rate to keep the location
error low. As the energy level falls below energy level 4 after
time tick 220, the policy becomes more conservative, reduc-
ing the sampling rates even for activity inferences associated
with high speeds. Different duty cycle schemes show differ-
ent tradeoffs between the average localization error and aver-
age GPS power consumption, as shown in Figure 12 and Fig-
ure 13. The Jigsaw MDP approach significantly reduces the
power usage yet keeps the average error low. The result of
the MDP learned duty cycle scheme is (41.8m,0.112W), in-
cluding the power consumed by the accelerometer pipeline.
The power consumption is equivalent to a fixed duty cycle
using a 4 min sampling interval, while the average location
error is between fixed duty cycle schemes sampling at 5s and
1 min. For the weekday traces, the result is (41.7m,0.076W).
Compared to the weekend case, average power consumption
is lower due to the larger proportion of stationary activities,
while the average error remains almost the same. For the
accelerometer augmented GPS sensing scheme, the localiza-
tion error is only slightly lower than our MDP scheme. How-
ever, it does not comply to any predefined energy budget con-
straint, so it uses more energy in both scenarios, particularly
at the weekend when there is more activities.
6 Jigsaw Applications
We implement two simple proof-of-concept applications

using the Jigsaw continuous sensing engine. JigMe is an op-
portunistic sensing application that automatically records a
user’s daily diary, as shown in Figure 16(b). The Green-
Saw application gives users awareness of their daily calorie
expenditure and carbon footprint, as shown in Figure 16(a).

(a) (b)
Figure 16: (a) The GreenSaw application provides carbon
footprint and caloric expenditure information, and (b) The
JigMe application provides a log of daily activities,
significant places, and transportation methods.

GreenSaw encourages environmental and health awareness
based solely on the accelerometer pipeline. It provides feed-
back about health and environmental data computed based
on the user’s transportation modes and physical activities.
The user needs to specify their gender, weight, height, and
car model. GreenSaw runs on a jail broken iPhone in order
to enable background process support.
In the case of the JigMe application, all three Jigsaw

pipelines run continuously in background and produce a time
series log of classified activities and location trace. JigMe
data is pushed to Facebook and visualized with a map inter-
face, as shown in Figure 16(b). Significant places [4] where
the user “sticks” are annotated with tags. Red tags indicate
long stays whereas green tags identify short visits. The lo-
cation trajectory is color coded by accelerometer inferences:
green for walking, red for cycling/running, blue for vehicle,
and stationary is omitted, such that the transportation meth-
ods between places can be clearly identified. When clicking
on a tag, a pop up window shows the recognized sound ac-
tivities in that location. Figure 16(b) shows that four activ-
ities are recognized in the user’s home: conversation, vacu-
uming, washing, and typing. The battery life varies due to
different phone usage, user behavior and context. The av-
erage battery life of the JigMe application on a Nokia N95
is 16 hours with moderate phone use. This compared very
well to other continuous sensing applications. For exam-
ple, the CenceMe [16] applications runs for 6 hours on the
same Nokia N95 phone. Recent rule based duty cycled ap-
plications EEMSS [29] operates for about 11 hours. JigMe
benefits from more sophisticated pipelines which are more



resilient to errors where the systems battery performance is
not depended on hand-tuned fix duty cycles.

7 Conclusion
Supporting continuous sensing applications on mobile

phones is very challenging. The low power design of sen-
sor pipelines is critical to the growing interest and success
of sensing applications on mobile phones. In this paper, we
present the design, implementation and evaluation of the Jig-
saw continuous sensing engine running on the Nokia N95
and the Apple iPhone. Jigsaw is designed to be extensible
so as new sensors come online new pipelines can be con-
structed. Applications can bind these pipelines together as
needed and configure them to meet specific needs of appli-
cations. Jigsaw performs all the sensing and classification
processing exclusively on the mobile phone without under-
mining the regular usage of the phone. Novel design ideas
are introduced in the paper to conserve battery life without
sacrificing the accuracy of the sensing system. Specifically,
we presented methods that: (i) allows inferences to be robust
to different phone hardware, orientation and body positions,
(ii) adaptively switches the depth and complexity of sensing
process based on the quality of the input data, and (iii) pre-
serves power by taking into account the longer-term mobil-
ity and behavior patterns of the user to intelligently trigger
power-hungry sensors (e.g., GPS). We believe the flexibil-
ity and adaptability of Jigsaw makes it suitable for a wide
range of emerging continuous sensing applications for mo-
bile phones.
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