
Modeling Context Information in Pervasive
Computing Systems�

Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy

School of Information Technology and Electrical Engineering
The University of Queensland
St Lucia QLD 4072 Australia

{karen, jaga, andry}@itee.uq.edu.au

Abstract. As computing becomes more pervasive, the nature of appli-
cations must change accordingly. In particular, applications must become
more flexible in order to respond to highly dynamic computing environ-
ments, and more autonomous, to reflect the growing ratio of applications
to users and the corresponding decline in the attention a user can devote
to each. That is, applications must become more context-aware. To fa-
cilitate the programming of such applications, infrastructure is required
to gather, manage, and disseminate context information to applications.
This paper is concerned with the development of appropriate context
modeling concepts for pervasive computing, which can form the basis for
such a context management infrastructure. This model overcomes prob-
lems associated with previous context models, including their lack of
formality and generality, and also tackles issues such as wide variations
in information quality, the existence of complex relationships amongst
context information and temporal aspects of context.

1 Motivation

The emergence of new types of mobile and embedded computing devices and
developments in wireless networking are driving a spread in the domain of com-
puting from the workplace and home office to other facets of everyday life. This
trend will lead to the scenario, often termed pervasive computing, in which cheap,
interconnected computing devices are ubiquitous and capable of supporting users
in a range of tasks. It is now widely acknowledged that the success of pervasive
computing technologies will require a radical design shift, and that it is not suf-
ficient to simply extrapolate from existing desktop computing technologies [1,
2]. In particular, pervasive computing demands applications that are capable of
operating in highly dynamic environments and of placing fewer demands on user
attention. In order to meet these requirements, pervasive computing applications
will need to be sensitive to context. By context, we refer to the circumstances
or situation in which a computing task takes place.
� The work reported in this paper has been funded in part by the Co-operative Rese-
arch Centre Program through the Department of Industry, Science and Tourism of
the Commonwealth Government of Australia.

F. Mattern and M. Naghshineh (Eds.): Pervasive 2002, LNCS 2414, pp. 167–180, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



168 K. Henricksen, J. Indulska, and A. Rakotonirainy

Currently, the programming of context-aware applications is complex and
laborious. This situation could be remedied by the creation of an appropri-
ate infrastructure that facilitates a variety of common tasks related to context-
awareness, such as modeling and management of context information. This pa-
per addresses the former issue by presenting a model of context for pervasive
computing that is able to capture features such as diversity, quality and com-
plex relationships amongst context information. The structure of the paper is
as follows. Section 2 examines the nature of context information in pervasive
computing environments in order to determine the requirements that a model of
context must satisfy. Section 3 characterizes related work in the field of context-
awareness, and evaluates its ability to support the requirements outlined in Sec-
tion 2. Next, Section 4 describes our context modeling approach, and Section 5
presents some concluding remarks and outlines topics for future research.

2 Defining Context

The term context is poorly understood and overloaded with a wide variety of
meanings. Various definitions of context have been put forward in the literature,
but even these offer few clues of the properties that are of interest when mod-
eling context. In this section we explore some of the characteristics of context
information, using a case study as the basis for our discussion.

2.1 Case Study: Context-Aware Communication

One of the most compelling uses of context is in communications applications.
Context-aware communication has been widely researched [3,4,5], and therefore
is reasonably well-understood. We discuss a variation of this application here
in order to illustrate the nature of context information required by pervasive
computing applications, and then return to this case study throughout the paper
in order to illustrate our context modeling concepts.

Bob has finished reviewing a paper for Alice, and wishes to share his
comments with her. He instructs his communication agent to initiate a
discussion with Alice. Alice is in a meeting with a student, so her agent
determines on her behalf that she should not be interrupted. The agent
recommends that Bob either contact Alice by email or meet with her
in half an hour. Bob’s agent consults his schedule, and, realizing that
he is not available at the time suggested by Alice’s agent, prompts Bob
to compose an email on the workstation he is currently using, and then
dispatches it according to the instructions of Alice’s agent.
A few minutes later, Alice’s supervisor, Charles, wants to know whether
the report he has requested is ready. Alice’s agent decides that the query
needs to be answered immediately, and suggests that Charles telephone
her on her office number. Charles’ agent establishes the call using the
mobile phone that Charles is carrying with him.



Modeling Context Information in Pervasive Computing Systems 169

The agents in this scenario rely upon information about the participants and
their communication devices and channels. For each participant, they require
knowledge about the participant’s activities (both current and planned), the
devices he/she owns, and those he/she is currently able to use. They must also
know the relationships that exist between people, such as who supervises whom
and who works with whom. Finally, the agents require information about the
communication channels that a participant can use and the devices that are
required by each channel.
Such information can be collected from a range of sources. Some information

must be explicitly supplied by users, such as that concerned with the relation-
ships between people and the ownership of devices and communication channels.
Other information may be obtained by hardware or software sensors, such as the
proximity of users to their computing devices. Still other information may be
derived from multiple sources; for example, user activity may be partly deter-
mined by the information stored in the user’s diary and partly derived from
other related context, such as the user’s location. As a result, context informa-
tion exhibits a diverse array of characteristics, which we now discuss.

2.2 Characteristics of Context Information

In this section, we make a number of observations about the nature of con-
text information in pervasive computing systems. These determine the design
requirements for our model of context.

Context Information Exhibits a Range of Temporal Characteristics.
Context information can be characterized as static or dynamic. Static context
information describes those aspects of a pervasive system that are invariant,
such as a person’s date of birth. As pervasive systems are typically characterized
by frequent change, the majority of information is dynamic. The persistence of
dynamic context information can be highly variable; for example, relationships
between colleagues typically endure for months or years, while a person’s lo-
cation and activity often change from one minute to the next. The persistence
characteristics influence the means by which context information must be gath-
ered. While it is reasonable to obtain largely static context directly from users,
frequently changing context must be obtained by indirect means, such as through
sensors.
Often, pervasive computing applications are interested in more than the cur-

rent state of the context; for example, in our case study agents rely not only
on information about current activity, but also activities planned for the future.
Accordingly, context histories (past and future) will frequently form part of the
context description.

Context Information is Imperfect. A second feature of context information
in pervasive systems is imperfection. Information may be incorrect if it fails to



170 K. Henricksen, J. Indulska, and A. Rakotonirainy

reflect the true state of the world it models, inconsistent if it contains contradic-
tory information, or incomplete if some aspects of the context are not known.
These problems may have their roots in a number of causes. First, pervasive
computing environments are highly dynamic, which means that information de-
scribing them can quickly become out of date. This problem is compounded by
the fact that frequently the sources, repositories and consumers of context are
distributed and information supplied by producers requires processing in order
to transform it into the form required by the consumer; these factors can lead
to large delays between the production and use of context information. Second,
context producers, such as sensors, derivation algorithms and users, may pro-
vide faulty information. This is particularly a problem when context information
must be inferred from crude sensor inputs; for example, when a person’s activity
must be inferred indirectly from other context information, such as location and
sound level. Finally, disconnections or failures can mean that the path between
the context producer and the consumer is cut, meaning that part or all of the
context is unknown.

Context Has Many Alternative Representations. Much of the context
information involved in pervasive systems is derived from sensors. There is usu-
ally a significant gap between sensor output and the level of information that
is useful to applications, and this gap must be bridged by various kinds of pro-
cessing of context information. For example, a location sensor may supply raw
coordinates, whereas an application might be interested in the identity of the
building or room a user is in. Moreover, requirements can vary between appli-
cations. Therefore, a context model must support multiple representations of
the same context in different forms and at different levels of abstraction, and
must also be able to capture the relationships that exist between the alternative
representations.

Context Information is Highly Interrelated. In our case study, several
relationships are evident between people, their devices and their communication
channels (for example, ownership of devices and channels and proximity between
users and their devices). Other less obvious types of relationships also exist
amongst context information. Context information may be related by derivation
rules which describe how information is obtained from one or more other pieces
of information. In our case study, a person’s current activity may be partially
derived from other context information, such as the person’s location and history
of past activities. We refer to this type of relationship, where the characteristics
of the derived information (its persistence, quality and so on) are intimately
linked to the properties of the information it is derived from, as a dependency.

2.3 Context Modeling and Management for Pervasive Systems:
Requirements

Having identified some of the features of context information in pervasive sys-
tems, we now address the issue of how to represent and manage this information.



Modeling Context Information in Pervasive Computing Systems 171

One approach is to model context using existing data modeling techniques from
the field of information systems, and to store and manage the information using
a database management system. Alternatively, one of the object-modeling tech-
niques commonly used by software engineers, such as UML, could be employed
to construct a model of context information and to support the mapping of this
model to an implementation in an object-oriented programming language. How-
ever, having explored these approaches, we suggest that they are neither natural
nor appropriate for describing context.
We attempted to model the scenario of Section 2.1 using both the Entity-

Relationship model and the class diagrams of UML, and experienced particular
difficulties in distinguishing between different classes of context information (for
example, static versus dynamic information, sensed information versus informa-
tion supplied by users), representing the temporal and error characteristics of
context and expressing relationships such as dependencies. We found the UML
constructs to be more expressive than those provided by ER, but also corre-
spondingly more cumbersome. As a result of our experiences, we suggest that
the most appropriate approach to modeling context information is using special
constructs designed with the characteristics of context in mind. In Section 4, we
present such a modeling approach.

3 Related Work

Much of the work in the relatively new field of context-awareness is concerned
with providing either frameworks that support the abstraction of context in-
formation from sensors or high-level models of context information that can be
queried by context-aware applications. In this section, we review both of these
areas of research and examine some of the shortcomings of the surveyed ap-
proaches.
Both the context toolkit [6] and the sensor architecture of Schmidt et al. [7]

support the acquisition of context data from sensors, and the processing of this
raw data to obtain high-level context information. The former is a programming
toolkit that assists the developers of context-aware applications by providing
abstract components (context widgets, interpreters and aggregators) that can be
connected together to gather and process context information from sensors. The
latter provides a layered model of context processing in which sensor output is
transformed into one or more cues, which undergo processing to form an abstract
context description comprising a set of values, each associated with a certainty
measure that estimates the certainty that the value is correct.
Other work in the field of context-awareness largely ignores the issues of

how context is derived from sensors, and focuses more upon modeling context
information and delivering this information to applications. The goals of this
work are closer to our own. The pioneering work in this area was carried out by
Schilit et al. [8], who proposed the use of dynamic environment servers to manage
and disseminate context information for an environment (where an environment
might represent a person, place or community). The model of context used in



172 K. Henricksen, J. Indulska, and A. Rakotonirainy

this work was extremely simple, with context information being maintained by
a set of environment variables. The Cooltown project [9] proposed a Web-based
model of context in which each entity (person, place or thing) has a correspond-
ing description the can be retrieved via a URL. This model is relatively informal;
entity descriptions take the form of Web pages, which may be unstructured and
intended for human (rather than application) consumption. The context mod-
eling approach proposed by the Sentient Computing project [10] is more formal
and is based upon an object-modeling paradigm. A conceptual model of context
is constructed using a language based on the Entity-Relationship model, and
context information is stored at run-time in a relational database. Gray and Sal-
ber present a model of context that aims to support design activities associated
with context-awareness [11]. Their model is mainly concerned with capturing
meta-information about context that describes features such as the format or
representation of the context information, its quality attributes, source, trans-
formation processes and actuation (the means by which it can be controlled).
The model is informal, being concerned more with supporting the processes as-
sociated with the development of context-aware software, including requirements
analysis and exploration of design issues, than with capturing context informa-
tion in a format that can be queried by applications. The Owl context service,
currently under development by Ebling et al. [12], aims to gather, maintain
and supply context information to clients. It tackles various advanced issues,
including access rights, historical context, quality, extensibility and scalability.
Currently, only early research results have been published, and the underlying
modeling concepts are not yet clear.
These context models exhibit a number of limitations. First, most lack the

formal basis that is required in order to capture context in an unambiguous way
and support reasoning about its various properties. The most formal models are
those that underpin the Sentient Computing approach and the context process-
ing framework of Schmidt et al.; however, these do not address all of the char-
acteristics of context that we identified in Section 2.2. Additionally, many of the
models are restricted to narrow classes of context; in particular, several support
only sensed context information and its derivatives [6,12,11,7]. Most also ignore
temporal aspects of context, including the need to represent histories of context
information, and do not address context quality [6,10,9,8]. In the remainder of
this paper we present a model of context that addresses these shortcomings.

4 Modeling Context Information

This section presents a collection of modeling concepts, together with an accom-
panying graphical notation, designed to capture many of the features of context
information that are relevant to the design and construction of pervasive systems
and applications. These modeling concepts provide a formal basis for represent-
ing and reasoning about some of the properties of context information that we
identified in Section 2, such as its persistence and other temporal characteristics,
its quality and its interdependencies.



Modeling Context Information in Pervasive Computing Systems 173

Fig. 1. Modeling the scenario of Section 2.1

The following sections present the modeling concepts incrementally, starting
with the fundamental modeling concepts, and then building upon these to ex-
press more complex aspects of context. We return to the case study of Section
2.1 throughout our discussion in order to illustrate our modeling concepts by
example.

4.1 Core Modeling Concepts

Our modeling concepts are founded on an object-based approach in which con-
text information is structured around a set of entities, each describing a physical
or conceptual object such as a person or communication channel. Properties of
entities, such as the name of a person or the identifier of a communication chan-
nel, are represented by attributes. An entity is linked to its attributes and other
entities by uni-directional relationships known as associations. Each association
originates at a single entity, which we refer to as the owner of the association,
and has one or more other participants. Associations can be viewed as asser-
tions about their owning entity, and a context description can correspondingly
be viewed as a set of such assertions. In the remainder of the paper, we use the
terms assertion and association interchangeably.
We provide a graphical notation for our modeling concepts in order to allow

context models to be specified diagrammatically. This notation takes the form
of a directed graph, in which entity and attribute types form the nodes, and
associations are modeled as arcs connecting these nodes. We present an example
in Figure 1, based on the case study of Section 2.1, to illustrate the notation.
Our example model is constructed around three entity types: people, com-

munication devices and communication channels. Each entity type is associated
with a number of attributes: people are associated with names and activities,
and channels and devices are associated with identifiers and types.
In addition to the associations between the entities and their attributes, sev-

eral associations exist between the entities. These capture relationships between



174 K. Henricksen, J. Indulska, and A. Rakotonirainy

Association

Dynamic association

Profiled association

Derived association

Sensed associationStatic association

Fig. 2. A classification scheme for context associations

people (who works with whom, and who is supervised by whom), between people
and devices (which devices each person is authorized to use and which devices are
currently located with each person), between people and communication chan-
nels (which channels belong to each user), and between devices and channels
(which devices the user requires in order to use each communication channel).
The model shown in Figure 1 captures the types of context information that

are involved in the scenario, but does not describe many of the characteristics
of this information that should ideally be known to context-aware applications
and their developers. The following sections address this problem. Sections 4.2
and 4.3 present schemes for classifying associations according to type and struc-
ture. Section 4.4 describes our approach to capturing dependencies between as-
sociations, and Section 4.5 is concerned with characterizing the imperfection of
context information.

4.2 Classifying Associations

In Section 2, we recognized the existence of several classes of context information
that exhibit markedly different properties in accordance with their persistence
and their source. We made the distinction between static and dynamic context,
and showed that dynamic context can exhibit a wide range of persistence charac-
teristics, which are linked to the means by which context information is obtained.
In this section, we formalize these observations in a scheme for categorizing as-
sertions about context, illustrated in Figure 2.
Static associations are relationships that remain fixed over the lifetime of

the entity that owns them. The context captured by this type of association is
typically known with a high degree of confidence, and in our example, includes
the associations involving device and channel types.
Dynamic associations are all of those associations that are not static. We

classify these according to source. Sensed associations are obtained from hard-
ware or software sensors. Frequently, this information is not inserted directly
into the model straight from the sensor, but is transformed in some way to bring
it closer to the level of abstraction required by applications. Sensed context typi-
cally changes frequently, and consequently, can suffer from problems of staleness
if there is a long lag between the time readings are taken at the sensor and
the time that the corresponding context information is delivered to the client.
Moreover, it can be subject to sensing errors arising from limitations inherent
in the sensing technology. Two examples of sensed context in our case study are



Modeling Context Information in Pervasive Computing Systems 175

Association

Simple association

Composite association

Collection association

Alternative association

Temporal association

Fig. 3. Structural constraints on context associations

user and device location coordinates, which we assume are derived from location
sensing mechanisms such as GPS receivers outdoors or Bats indoors [10].
Derived associations are obtained from one or more other associations using

a derivation function that may range in complexity from a simple mathematical
calculation to a complex AI algorithm. This type of context often assumes some
of the properties of the class(es) of information it is derived from; for example,
derived context information that is obtained from sensed information often has
similar or magnified persistence and error characteristics. In addition, derived
context as a class typically suffers from its own inherent limitations. In particular,
derivation functions are often liable to draw incorrect or imprecise conclusions
as a result of their reliance on crude inputs or overly simplistic classification
models.
An example of derived context from our case study is the is located near

relationship that, for each person, describes the set of devices located nearby.
Relationships of this type need not be modeled explicitly, but can be derived for
a given person by examining the Location Coordinates attribute of every device,
and comparing it with the Location Coordinates attribute of the person.
The third class of dynamic association captures profiled information; that

is, information that has been supplied by users. This class of information is
typically more reliable than sensed and derived context and longer-lived, but
can still suffer from staleness, as users may neglect to update information as it
becomes out of date. Examples of profiled context include user names, and the
works with and supervised by associations that exist between people.
The main benefit of classifying context information as we have described is

that reasoning about information persistence and quality becomes possible. For
example, conflicts can be resolved by favoring the classes of context that are
most reliable (static followed by profiled) over those that are more often subject
to error (sensed and derived).

4.3 Structural Constraints on Associations

Context information can vary from simple, atomic facts to complex histories.
We support these different types of context by further categorizing associations
according to structure, as shown in Figure 3.
An association is simple if each entity participating as owner of the associ-

ation participates no more than once in this role. An example of this type of
association is the named association of Person.



176 K. Henricksen, J. Indulska, and A. Rakotonirainy

Fig. 4. Modeling the different association types for our case study

An association is composite if it is not simple. We refine composite associa-
tions into collection, alternative and temporal associations. Collections are used
to represent the fact that the owning entity can simultaneously be associated
with several attribute values and/or other entities, for example, people may work
with many other people, and may have several communication channels. Alter-
natives differ from collections in that they describe alternative possibilities that
can be considered to be logically linked by the ’or’ operator rather than the ’and’
operator. One example of an association of this type is the requires relationship
between channels and devices. By classifying the role as an alternative rather
than a collection, it acquires the semantics that a channel requires one of the
devices it is associated with, rather than all. This type of association is useful
when the context model must capture a number of different representations of
the same information as described in Section 2.2, or when two or more sources
of context information supply contradicting information and it is desirable to
capture each of the different possibilities. Finally, a temporal association is also
associated with a set of alternative values, but each of these is attached to a given
time interval. This type of association can be viewed as a function mapping each
point in time to a unique value. In our example, user activity is captured by a
temporal association.
We distinguish the various different types of associations we have discussed

in this and the preceding section diagrammatically by annotating the association
arcs as shown in Figure 4.

4.4 Modeling Dependencies

A dependency is a special type of relationship, common amongst context in-
formation, that exists not between entities and attributes, as in the case of
associations, but between associations themselves. A dependency captures the
existence of a reliance of one association upon another. We say that an associa-



Modeling Context Information in Pervasive Computing Systems 177

Fig. 5. Context model for our case study, showing the derivation dependencies

tion, a1, dependsOn another association, a2, iff a change to a2 has the potential
to cause a change in a1. Each derived association is accompanied by at least
one dependency; however, dependencies can also exist independently of derived
associations. For example, on a mobile device a change in usage of network band-
width can influence the battery life; that is, battery life dependsOn bandwidth.
The importance of capturing dependencies is pointed out by Efstratiou et al.

[13]. Without knowledge of such dependencies, inappropriate decisions can be
made by context-aware applications that lead to instability. Moreover, knowledge
of dependencies is important from a context management perspective, as it can
assist in the detection of context information that has become out-of-date.
We model a dependency, a1 dependsOn a2, as a directed arc leading from a1

to a2 , as shown in Figure 5. A dependency can be qualified by a participation
constraint, which limits the pairs of associations to which the dependency ap-
plies. We capture three derivation dependencies in the figure. First, we show that
the engaged in association that links people with activities is dependent upon
the located at association. We qualify this association to indicate that associa-
tions of these two types are linked only if they describe the same person (that is,
a person’s activity is only dependent on that same person’s location, and not on
any other person’s location). Similarly, we show that the set of devices located
near a person is dependent on that person’s location as well as the location of
all devices.

4.5 Modeling Context Quality

In Section 2.2, we identified imperfection as one of the characteristics of context
information in pervasive systems. Errors in context information may arise as a



178 K. Henricksen, J. Indulska, and A. Rakotonirainy

result of sensing and classification errors, changes in the environment leading to
staleness, and so on. As context information is relied upon by applications to
make decisions on the user’s behalf, it is essential that applications have some
means by which to judge the reliability of the information. For this reason, we
incorporate measures of information quality into our model of context.
The need to address the varying quality of context information has been

widely recognized [14,15,12,11,7], yet none of the existing work addresses the
problem in an adequate or general way. Dey et al. suggest that ambiguous in-
formation can be resolved by a mediation process involving the user [15]. How-
ever, considering the potentially large quantities of context information involved
in pervasive computing environments and the rapid rate at which context can
change, this approach places an unreasonable burden on the user. Ebling et al.
describe a context service that allows context information to be associated with
quality metrics, such as freshness and confidence [12], but their model of context
is incomplete and lacks formality. Castro et al. have a well-defined notion of qual-
ity based on measures of accuracy and confidence [14], but their work considers
only location information. Schmidt et al. associate each of their context values
with a certainty measure that captures the likelihood that the value accurately
reflects reality [7]. They are concerned only with sensed context information, and
moreover take a rather narrow view of context quality. Finally, Gray and Salber
include information quality as a type of meta-information in their context model,
and describe six quality attributes: coverage, resolution, accuracy, repeatability,
frequency and timeliness [11]. Neither their information model nor their quality
model are formally defined, as they are intended to support requirements analy-
sis and the exploration of design issues, rather than to support the development
of a context model that can be populated with data and queried by applications.
Quality modeling has been more extensively researched by the information

systems community. Our modeling concepts borrow ideas from the work of Wang
et al., who describe a quality model in which attributes are tagged with various
quality indicators [16]. In our model, we support quality by allowing associa-
tions to be annotated with a number of quality parameters, which capture the
dimensions of quality considered relevant to that association. Each parameter is
described by one or more appropriate quality metrics, which represent precise
ways of measuring context quality with respect to the parameter.
The types of quality parameters and metrics that are relevant are dependent

on the nature of the association. For example, the quality of information about
a user’s location can be characterized by its accuracy, measured by the standard
error of the location system, and freshness, determined by the time the location
information was produced and the average lifetime of information related to user
location. On the other hand, the quality of an assertion about user activity can
be described by the certainty the information source has about the supplied
information, measured as a probability estimate, and the overall accuracy of
that information source, also described by a probability value. We illustrate the
tagging of associations with quality parameters and metrics in Figure 6.



Modeling Context Information in Pervasive Computing Systems 179

Fig. 6. Context model for our case study, annotated with quality parameters and
metrics for two of the associations

5 Concluding Remarks

In this paper, we explored the characteristics of context information in pervasive
systems and described a set of context modeling concepts designed to accommo-
date these. Our concepts were presented using the case study of Section 2.1, but
are sufficiently generic to capture arbitrary types of context information, and
thus to support a diverse range of context-aware applications.
We are currently in the process of developing a context management system

founded upon the modeling constructs that we have presented. This system will
allow abstract models described in our notation to be mapped with little effort
to corresponding implementation models that can be populated with context
information and queried by applications. It will be responsible for a range of
management tasks, such as integration of context information from a variety
of sources, management of sensors and derived context, detection of conflicting
information, and so on. Concurrently, we are implementing the context-aware
communication application that we have described. We have already used this
case study to validate the context modeling concepts we presented in this paper,
and, next, we hope to use the implementation of the case study to validate our
context management infrastructure.
Aside from our implementation efforts, we envisage several areas for future

work. These involve the extension of our context modeling concepts in order to
address key issues for pervasive computing systems, such as privacy and distri-
bution of context information. A privacy model is required in order to prevent



180 K. Henricksen, J. Indulska, and A. Rakotonirainy

abuses of context information, particularly personal information, by limiting its
dissemination. Similarly, a distribution model is needed to support the appropri-
ate partitioning and replication of context information across pervasive systems.
This model must balance the requirement for a globally consistent view of con-
text with the need for timely retrieval and continued access to information during
periods of network disconnection.

References

1. Norman, D.: The Invisible Computer. MIT Press, Cambridge, Massachusetts
(1998)

2. Henricksen, K., Indulska, J., Rakotonirainy, A.: Infrastructure for pervasive com-
puting: Challenges. In: Informatik 2001: Workshop on Pervasive Computing, Vi-
enna (2001)

3. Hong, J., Landay, J.: A context/communication information agent. Personal and
Ubiquitous Computing: Special Issue on Situated Interaction and Context-Aware
Computing 5 (2001)

4. Schmandt, C.: Everywhere messaging. In: 1st International Symposium on Hand-
held and Ubiquitous Computing (HUC’99). (1999)

5. A, S., Takaluoma, A., Mäntyjärvi, J.: Context-aware telephony over wap. Personal
Technologies 4 (2000)

6. Dey, A., Salber, D., Abowd, G.: A context-based infrastructure for smart en-
vironments. In: 1st International Workshop on Managing Interactions in Smart
Environments (MANSE’99). (1999)

7. Schmidt, A., et al.: Advanced interaction in context. In: 1st International Sympo-
sium on Handheld and Ubiquitous Computing (HUC’99), Karlsruhe (1999)

8. Schilit, B., Theimer, M., Welch, B.: Customising mobile applications. In: USENIX
Symposium on Mobile and Location-Independent Computing. (1993)

9. Kindberg, T., et al.: People, places, things: Web presence for the real world.
Technical Report HPL-2000-16, Hewlett-Packard Labs (2000)

10. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a
context-aware application. In: Mobile Computing and Networking. (1999) 59–68

11. Gray, P., Salber, D.: Modelling and using sensed context in the design of interac-
tive applications. In: 8th IFIP Conference on Engineering for Human-Computer
Interaction, Toronto (2001)

12. Ebling, M., Hunt, G.D.H., Lei, H.: Issues for context services for pervasive com-
puting. In: Middleware 2001 Workshop on Middleware for Mobile Computing,
Heidelberg (2001)

13. Efstratiou, C., Cheverst, K., Davies, N., Friday, A.: An architecture for the effective
support of adaptive context-aware applications. In: Mobile Data Management
(MDM), Hong Kong, China, Springer (2001) 15–26

14. Castro, P., Chiu, P., Kremenek, T., Muntz, R.: A probabilistic room location ser-
vice for wireless networked environments. In: UbiComp 2001 Conference, Atlanta
(2001)

15. Dey, A., Mankoff, J., Abowd, G.: Distributed mediation of imperfectly sensed con-
text in aware environments. Technical Report GIT-GVU-00-14, Georgia Institute
of Technology (2000)

16. Wang, R., Reddy, M.P., Kon, H.: Towards quality data: An attribute-based ap-
proach. Decision Support Systems 13 (1995) 349–372


	Motivation
	Defining Context
	Case Study: Context-Aware Communication
	Characteristics of Context Information
	Context Modeling and Management for Pervasive Systems: Requirements

	Related Work
	Modeling Context Information
	Core Modeling Concepts
	Classifying Associations
	Structural Constraints on Associations
	Modeling Dependencies
	Modeling Context Quality

	Concluding Remarks

