CMSC 330: Organization of
Programming Languages

DFAs, and NFAs, and Regexps
(Oh my!)

CMSC330 Spring 2018

Types of Finite Automata

» Deterministic Finite Automata (DFA)
* Exactly one sequence of steps for each string
* All examples so far

» Nondeterministic Finite Automata (NFA)
* May have many sequences of steps for each string
* Accepts if any path ends in final state at end of string
* More compact than DFA

» But more expensive to test whether a string matches

CMSC 330 Spring 2018

Quiz 1: Which DFA matches this regexp?

b(b|at+b?)

D. None of the above

CMSC 330 Spring 2018

Quiz 1: Which DFA matches this regexp?

b(b|at+b?)

D. None of the above

CMSC 330 Spring 2018

Comparing DFAs and NFAs

» NFAs can have more than one transition
leaving a state on the same symbol

d
O
» DFAs allow only one transition per symbol

e |.e., transition function must be a valid function
* DFA is a special case of NFA

CMSC 330 Spring 2018

Comparing DFAs and NFAs (cont.)

» NFAs may have transitions with empty string label
* May move to new state without consuming character

€ .
O > e-transition

» DFA transition must be labeled with symbol
* DFA is a special case of NFA

CMSC 330 Spring 2018 6

DFA for (a|b)*abb

RE®

NFA for (a|b)*abb

» ba
* Has paths to either SO or S1
* Neither is final, so rejected

» babaabb

* Has paths to different states
* One path leads to S3, so accepts string

CMSC 330 Spring 2018

NFA for (ablaba)*

» aba
* Has paths to states S0, S1

» ababa
* Has paths to SO, S1
* Need to use g-transition

CMSC 330 Spring 2018

Comparing NFA and DFA for (ablaba)*

DFA

CMSC 330 Spring 2018 10

NFA Acceptance Algorithm Sketch

» When NFA processes a string s

* NFA must keep track of several “current states”
» Due to multiple transitions with same label
» e-transitions

* If any current state is final when done then accept s

» Example

* After processing “a”
> NFA may be in states

S1

S2

S3

CMSC 330 Spring 2018 11

Formal Definition

» A deterministic finite automaton (DFA) is a

S5-tuple (2, Q, q,, F, 0) where
* 2 is an alphabet
* Qis a nonempty set of states
* qp € Qis the start state
F € Q is the set of final states
0 : Q x 2 — Q specifies the DFA's transitions
» What's this definition saying that d is?

» A DFA accepts s if it stops at a final state on s

CMSC 330 Spring 2018

12

Formal Definition: Example

. 5 =40, 1) N 1
0
°* gy, = SO -
. F ={S1)
o symbol 0 1
O 0 1
2 s0| so| st
£ S1| SO| S1

or as { (S0,0,S0),(S0,1,51),(S1,0,S0),(S1,1,S1) }

CMSC 330 Spring 2018

13

Nondeterministic Finite Automata (NFA)

» An NFA is a 5-tuple (2, Q, q,, F, d) where
e 2,Q, q0, F as with DFAs
* 0 € Qx (2 u{e}) xQ specifies the NFA's transitions

o Z:{a}
. Q={S1,S2, S3}

« 5={(S1,a,S1), (31,a,S2), (S2,¢,33)}

Example

» An NFA accepts s if there is at least one path via s
from the NFA's start state to a final state

CMSC 330 Spring 2018 14

Relating REs to DFAs and NFAs

» Regular expressions, NFAs, and DFAs accept
the same languages!

can
reduce

DFA < NFA

can transform can reduce

RE

CMSC 330 Spring 2018 15

Reducing Regular Expressions to NFAs

» Goal: Given regular expression A, construct
NFA: <A>=(%,Q, q, F, 0)

* Remember regular expressions are defined
recursively from primitive RE languages

* |nvariant: |[F| =1 in our NFAs
> Recall F = set of final states

» Will define <A> for base cases: 0,¢, 0
* Where o is a symbol in 2

» And for inductive cases: AB, A|B, A*

CMSC 330 Spring 2018 16

Reducing Regular Expressions to NFAs

» Base case: o

fOXNe
<o> = ({0}, {SO, S1}, S0, {S1}, {(SO, o, S1)})

CMSC 330 Spring 2018 17

Reduction

» Base case: ¢

Y

<e> = (@, {S0}, SO, {S0},)

» Base case: 0

=

<@> = (@, {S0, S1}, S0, {S1}, ©)

CMSC 330 Spring 2018

18

Reduction: Concatenation

» Induction: AB

<A>

o <A> = (ZA’ QA, QAa {fA}’ 6A)
o = (ZB’ QB’ QBa {fB}’ 68)

CMSC 330 Spring 2018 19

Reduction: Concatenation

» Induction: AB
T oo o
g ~- J - ~ /

<A>

o <A> = (ZA, QA, QAa {fA}’ 6A)
o = (ZB’ QB’ QBa {fB}’ 68)
* <AB>= (24U 25, Qa U Qg, Qa, {fg}, 04 W O U {(fa,€,08)})

CMSC 330 Spring 2018 20

Reduction: Union

» Induction: A|B .@
JORSEC

* <A>= (Z,, Qa, 9ps {fa} On)
e = (ZB’ QB’ QBa {fB}’ 68)

CMSC 330 Spring 2018

21

Reduction: Union

» Induction: A|B ‘ »@
\)

© <A>= (25 Qa, Qas {fals O4)
* = (25, Qg, g, {fg}, Op)
« <A|B>= (£, U Zg, QU Qg U {S0,S1}, SO, {S1},
6A J 6B J {(SO,S,qA), (SO,S,qB), (fA’&:’S1)’ (fB’a’S'I)})

CMSC 330 Spring 2018

22

Reduction: Closure

» Induction: A*

4

o <A> = (ZA’ QA, qAa {fA}a 6A)

CMSC 330 Spring 2018

23

Reduction: Closure

» Induction: A*

© <A>= (25 Qa, Qas {fals O4)
« <A*>= (Z,, Q, U {S0,S1}, SO, {S1},
O, U {(fs,€,51), (S0,¢,q,), (S0,€,51), (S1,£,S0)})

CMSC 330 Spring 2018

24

Quiz 2: Which NFA matches a* ?

CMSC 330 Spring 2018

25

Quiz 2: Which NFA matches a* ?

o (N
i

CMSC 330 Spring 2018

26

Quiz 3: Which NFA matches a|b* ?

A
- £ o : ° £
S0

CMSC 330 Spring 2018

Quiz 3: Which NFA matches a|b* ?

CMSC 330 Spring 2018

Reduction Complexity

» Given a regular expression A of size n...

Size = # of symbols + # of operations

» How many states does <A> have?

* Two added for each |, two added for each *
* O(n)
* That's pretty good!

CMSC 330 Spring 2018

31

Reducing NFA to DFA

can
reduce

DFA <

RE

CMSC 330 Spring 2018

NFA

can reduce

33

Reducing NFA to DFA

» NFA may be reduced to DFA
* By explicitly tracking the set of NFA states

» Intuition
e Build DFA where

» Each DFA state represents a set of NFA “current states”

» Example
d

| /]
LB DS
NFA DFA

CMSC 330 Spring 2018 34

Algorithm for Reducing NFA to DFA

» Reduction applied using the subset algorithm
e DFA state is a subset of set of all NFA states

» Algorithm
* Input
> NFA (Z, Q, qo, F,,, ©)
e QOutput
> DFA (Z, R, ry, Fy, 8)

* Using two subroutines
» g-closure(d, p) (and e-closure(s, S))
» move(d, p, a) (and move(d, S, a))

CMSC 330 Spring 2018

35

e-transitions and s-closure

» Wesayp & g

* Ifitis possible to go from state p to state g by taking only
e-transitions in 0

* If3p, Py, Pys --- Pryy @ € Q such that

> {p.€,p1} € 0, {P1.€,P2} €O, ..., {Pn,€,Q} € O
» €-closure(0, p)

* Set of states reachable from p using e-transitions alone
> Set of states q such that p LN g according to 0
> e-closure(®, p)={q|p & qind}
> e-closure(3, Q)={q|peQ,psqind}

* Notes

» g-closure(d, p) always includes p

> We write g-closure(p) or e-closure(Q) when 0 is clear from context
CMSC 330 Spring 2018 36

e-closure: Example 1

» Following NFA contains
- S15,. 82
¢ S25,83

e S1%, 83
> Since S1 5 S2 and S2 -5 S3

» €-closures
* g-closure(S1)= {51, S2, S3}
* ¢-closure(S2)= {S2, S3}
* e-closure(S3) = {S3}
e ¢-closure({S1,S82})= {S$1,82,S3}uU{S2, S3}

CMSC 330 Spring 2018 37

e-closure: Example 2

» Following NFA contains
« S15 83

e S35, 82
¢« S15%, 82
. Since 1 £ S3and $3 & S2 €
» €-closures
e e-closure(S1)= {351,352, S3}
* g-closure(S2)= {S2}
* ¢-closure(S3)= {S2, S3}

* g-closure({S2,S3})= {S2}uU{S2,S3}

CMSC 330 Spring 2018 38

e-closure Algorithm: Approach

» Input: NFA (Z, Q, q,, F,,, 0), State Set R
» Output: State Set R’

» Algorithm
LetR'=R // start states
Repeat
LetR=R’ // continue from previous

LetR'"=Ru{g|peR,(p, ¢ q) €} I/l new e-reachable states
Until R =R’ // stop when no new states

This algorithm computes a fixed point
see note linked from project description

CMSC 330 Spring 2018 39

e-closure Algorithm Example

» Calculate s-closure(5.{S1})

{S1} {S1} a

LletR’' =R
{S1) {S1, S2} Ropoat

Let R= R’

letR' =R U e R, (p, &,)
{$1,82} {81,82,83} |‘eiR=RulalpeR(peq<d)

{S1, S2, S3} {S1, S2, S3)

CMSC 330 Spring 2018 40

Calculating move(p,a)

» move(d,p,a)
* Set of states reachable from p using exactly one
transition on a
» Set of states g such that{p, a, q} € 6

> move(d,p,a)={q|{p,a,q; 0}
> move(d,Q,a)={q|lpeQ{p,aqled}
- i.e., can “lift” move() to start from a set of states Q

* Notes:
> move(d,p,a) is @ if no transition (p,a,q) € 0, for any q
» We write move(p,a) or move(R,a) when d clear from context

CMSC 330 Spring 2018 41

move(a,p) : Example 1

» Following NFA

» Move a

()
e move(S1,b)= O move({S1,S2},b) = { S3}
* move(S2, a) = Z
* move(S2, b) = {S3}
e move(S3,a)= 9
e move(S3,b)= @

CMSC 330 Spring 2018 42

move(a,p) : Example 2

» Following NFA

e 2={a,b}
» Move

e move(S1,a)= {S2}
* move(S1,b)= {S3}
* move(S2,a)= {S3}
* move(S2,b)= O

e move(S3,a)= 9

* move(S3,b)= 9

CMSC 330 Spring 2018

move({S1,S2},a) = {S2,S3)

43

NFA — DFA Reduction Algorithm (“subset”)

» Input NFA (2, Q, q,, F,,,), Output DFA (%, R, ry, Fy, &)
» Algorithm

Let ry = e-closure(d,q,), add itto R /I DFA start state
While 3 an unmarked state r ¢ R /[process DFA state r
Mark r // each state visited once
Foreacha e X // for each letter a
Let E = move(d,r,a) /] states reached via a
Let e = e-closure(d,E) // states reached via ¢
Ife ¢ R /] if state e is new
Let R =R U {e} // add e to R (unmarked)
Letd' =8 u{r, a, e} // add transition r—e
LetFy={r|3s erwiths € F} /I final if include state in F,

CMSC 330 Spring 2018 44

NFA — DFA Example 1

Start = e-closure(0,51) = { {S1,S3} } NFA
R={{51,S3}}
re R={S1,S3}

move(0,{S1,53},a) = {S2}
> e = g-closure(0,{S2}) = {S2}
» R=Ru {{S2}} = {{S1,33}, {S2} } DFA

» 0 =0 u{{S1,53}, a, {S2}} a
move(5.{S1.S3}.b) = @

CMSC 330 Spring 2018 45

NFA — DFA Example 1 (cont.)

R ={{S1,83}, {S2}}
re R= {82}
move(0,{S2},a) = J
move(0,{S2},b) = {S3}
> e = g-closure(0,{S3}) = {S3}
» R=RuU{{S3}} ={{S1,33}, {S2}, {S3} } DFA

> 8 =8 U{{S2}, b, {S3}

CMSC 330 Spring 2018 46

NFA — DFA Example 1 (cont.)

- R={{S1,S3}, {S2}, {S3}} NFA

* r e R={S3} a b
* Move({S3},a) = O @ @
* Move({S3},b) =Q ¢

* Mark {S3}, exit loop
* Fq={{51,33}, {S3}} DFA

> Since S3 e F, a b @
* Done!

CMSC 330 Spring 2018 47

Quiz 4: Which DFA is equiv to this NFA??

NFA:

RO -0

&

b

None of the above

i““ ”ﬁ
CMSC 330 Spring 2018

Quiz 4: Which DFA is equiv to this NFA??

NFA:

RO -0

&

b

None of the above

i““ C”a
CMSC 330 Spring 2018

Actual Answer

51

CMSC 330 Spring 2018

Subset Algorithm as a Fixed Point

» Input: NFA (2, Q, g4, F, 0)
» Output: DFA M
» Algorithm

Let q, = e-closure(d, qg)
Let F'={q,} ifqy N F# @, or @ otherwise
Let M =(Z, {q,’}, qo’, F’, 0) /I starting approximation of
DFA
Repeat
LetM =M // current DFA approx
For each q € states(M), a € 2 // for each DFA state g and letter a
Let s = e-closure(d, move(d, q, a)) // new subset from g
Let F' ={s}if s F# @, or @ otherwise, // subset contains final?
M =M U (0, {s}, 9, F', {(q, a, s)}) // update DFA
Until M =M // reached fixed point

CMSC 330 Spring 2018 57

Redux: DFA to NFA Example 1

e q, = e-closure(d,S1) = {S1,S3}
o F' ={{S1,S3}}since {S1,83} N {S3}# ¢ NFA

o M'={2, {{S1,S3}}, {51,S3}, {{S1,S3}}, 0}
Q’ do’ F’ O’

CMSC 330 Spring 2018 58

Redux: DFA to NFA Example 1 (cont)

o M'={2, {{S1,S3}}, {51,S3}, {{S1,S3}}, 0}
® q ={S1, S3}
® a=a
® s = {S2}
» since move(d,{S1, S3},a) = {S2}
» and e-closure(d,{S2}) = {S2}
o F' =90
> Sin 2} N =
b s —(82) P - (53 DFA

e M'=M U (0,{{S2}}, 0, 0, {{S1,83},a,{S2)})
e ={3% {{S1,S3},{S2}}, {S1,S3}, {{S1,S3}}, {({S1,S3},a.{S2})} }
Q do’ F)

CMSC 330 Spring 2018 59

Redux: DFA to NFA Example 1 (cont)

e M ={% {{S1,S3},{S2}}, {S1,S3}, {{S1,S3}}, {({S1,S3},a,{S2})} }
e q = {S2}
® a=>hb

NFA
(250
» since move(d,{S2},b) = {S3}
€

» and e-closure(d,{S3}) = {S3}
° F ={{S3}
> Since {S3} N {S3} = {S3}
> where s = {S3} and F = {S3} DFA

(o, {{S3l}, 0, {{S3}}, {{S21,biS3D})
={ Z, {{51,83},{S2},{S3}}, {S1,S3}, {{S1,S3}.{S3}}, {({S1,S3},a.{S2}), ({S2}.b.{S3})} }
’ do’ F’ 5

CMSC 330 Spring 2018 60

Analyzing the Reduction

» Can reduce any NFA to a DFA using subset alg.

» How many states in the DFA?
e Each DFA state is a subset of the set of NFA states
* Given NFA with n states, DFA may have 2" states

» Since a set with n items may have 2" subsets

* Corollary
» Reducing a NFA with n states may be O(2")

CMSC 330 Spring 2018 61

Reducing DFA to RE

can
reduce
DFA <
can transform
RE

CMSC 330 Spring 2018

NFA

can transform

62

Reducing DFAs to REs

» General idea

* Remove states one by one, labeling transitions with
regular expressions

* When two states are left (start and final), the
transition label is the regular expression for the DFA

CMSC 330 Spring 2018

ablba

63

Other Topics

» Minimizing DFA
* Hopcroft reduction

» Complementing DFA
» Implementing DFA

CMSC 330 Spring 2018

66

Minimizing DFAs

» Every regular language is recognizable by a
unigue minimum-state DFA

* Ignoring the particular names of states

» |In other words

* For every DFA, there is a unique DFA with minimum
number of states that accepts the same language

CMSC 330 Spring 2018 67

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971

Minimizing DFA: Hopcroft Reduction

» Intuition

* Look to distinguish states from each other
» End up in different accept / non-accept state with identical input

» Algorithm

* Construct initial partition
» Accepting & non-accepting states

* lteratively split partitions (until partitions remain fixed)

> Split a partition if members in partition have transitions to
different partitions for same input

- Two states x, y belong in same patrtition if and only if for all
symbols in 2 they transition to the same partition

* Update transitions & remove dead states

CMSC 330 Spring 2018 68

Splitting Partitions

» No need to split partition {S,T,U,V}
* All transitions on a lead to identical partition P2
* Even though transitions on a lead to different states

4 P P2\

CMSC 330 Spring 2018

69

Splitting Partitions (cont.)

» Need to split partition {S,T,U} into {S, T}, {U}
* Transitions on a from S, T lead to partition P2
* Transition on a from U lead to partition P3

&
n
.....
¥y
Ny

CMSC 330 8%018

p1)

P

- @/
i P3
/ . J

70

Resplitting Partitions

» Need to reexamine partitions after splits
* Initially no need to split partition {S,T,U}

* After splitting partition {X,Y} into {X}, {Y} we need to split
partition {S,T,U} into {S, T}, {U}

CMSC 330 SpringSw 71

Minimizing DFA: Example 1

» DFA

» Initial partitions

» Split partition

CMSC 330 Spring 2018

72

Minimizing DFA: Example 1

» DFA

» Initial partitions

* Accept {R} = P1
 Reject {S, T} = P2

» Split partition? — Not required, minimization done
* move(S,a) =T e P2 — move(S,b) =R e P1

* move(T,a) =T € P2 —move (T,b) =R € P1

CMSC 330 Spring 2018 73

Minimizing DFA: Example 2

CMSC 330 Spring 2018

74

Minimizing DFA: Example 2

» DFA
.. .. DFA
» Initial partitions already
 Accept {R} = P1 minimal
* Reject {S, T} =P2
» Split partition? — Yes, different partitions for B
* move(S,a) =T e P2 —move(S,b) =T e P2

* move(T,a) =T € P2 —move (T,b) =R € P1

CMSC 330 Spring 2018 75

Complement of DFA

» Given a DFA accepting language L

* How can we create a DFA accepting its complement?

* Example DFA
» 2 = {a,b}

d

lo@B O

b

CMSC 330 Spring 2018 78

Complement of DFA

» Algorithm
* Add explicit transitions to a dead state

* Change every accepting state to a non-accepting state
& every non-accepting state to an accepting state

» Note this only works with DFAs
* Why not with NFAs?

CMSC 330 Spring 2018 79

Implementing DFAs (one-off)

cur_state = 0;
while (1) {

It's easy to build symbol = getehar ()
a program which switch (cur_state) |
mimiCS a DFA case 0: switch (symbol) ({

case '0': cur_state = 0; break;
case 'l': cur_state = 1; break;
case '\n': printf("rejected\n"); return
default: printf ("rejected\n"); return 0

o

e e

Y 1)

break;
case 1l: switch (symbol) {

case '0': cur_state = 0; break;

0 case 'l': cur_state = 1; break;

case '\n': printf("accepted\n"); return 1;

0 1 default: printf ("rejected\n"); return 0;
}

break;

default: printf ("unknown state; I'm confused\n");
break;

CMSC 330 Spring 2018 80

Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components (2, Q, q,, F,) of a DFA:

letq=q,

while (there exists another symbol s of the input string)
q:=9(q, s);

if g € Fthen
accept

else reject

* ¢ isjust an integer
* Represent 6 using arrays or hash tables
* Represent F as a set

CMSC 330 Spring 2018

81

Running Time of DFA

» How long for DFA to decide to accept/reject string s?
* Assume we can compute 6(q, c) in constant time

* Then time to process s is O(|s|)
» Can’t get much faster!

» Constructing DFA for RE A may take O(2/A!) time

* But usually not the case In practice

» S0 there’s the initial overhead
* But then processing strings is fast

CMSC 330 Spring 2018 82

Summary of Regular Expression Theory

» Finite automata
 DFA, NFA

» Equivalence of RE, NFA, DFA
 RE — NFA

> Concatenation, union, closure

* NFA — DFA

> e-closure & subset algorithm

» DFA

* Minimization, complement
* Implementation

CMSC 330 Spring 2018 84

