CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps (Oh my!)

Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far
- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - > But more expensive to test whether a string matches

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

D. None of the above

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

D. None of the above

Comparing DFAs and NFAs

NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA

DFA for (a|b)*abb

NFA for (a|b)*abb

- ba
 - Has paths to either S0 or S1
 - Neither is final, so rejected
- babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string

NFA for (ab|aba)*

- ▶ aba
 - Has paths to states S0, S1
- ababa
 - Has paths to S0, S1
 - Need to use ε-transition

Comparing NFA and DFA for (ab|aba)*

NFA Acceptance Algorithm Sketch

- When NFA processes a string s
 - NFA must keep track of several "current states"
 - > Due to multiple transitions with same label
 - > ε-transitions
 - If any current state is final when done then accept s
- Example

After processing "a"

Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple (Σ, Q, q₀, F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - F ⊆ Q is the set of final states
 - $\delta: Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
 - \triangleright What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

Formal Definition: Example

•
$$\Sigma = \{0, 1\}$$

•
$$Q = \{S0, S1\}$$

•
$$q_0 = S0$$

or as { (S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1) }

CMSC 330 Spring 2018

Nondeterministic Finite Automata (NFA)

- ► An NFA is a 5-tuple (Σ , Q, q₀, F, δ) where
 - Σ, Q, q0, F as with DFAs
 - $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ specifies the NFA's transitions

An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same languages!

Reducing Regular Expressions to NFAs

- Goal: Given regular expression *A*, construct NFA: $\langle A \rangle = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: |F| = 1 in our NFAs
 - > Recall F = set of final states
- ▶ Will define $\langle A \rangle$ for base cases: σ , ϵ , \emptyset
 - Where σ is a symbol in Σ
- ► And for inductive cases: AB, A|B, A*

Reducing Regular Expressions to NFAs

Base case: σ

 $<\sigma> = ({\sigma}, {S0, S1}, {S0, {S1}, {(S0, \sigma, S1)}})$

Reduction

Base case: ε

$$\langle \epsilon \rangle = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$$

Base case: Ø

$$<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$$

Reduction: Concatenation

▶ Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Concatenation

▶ Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$

Reduction: Union

► Induction: A|B

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

CMSC 330 Spring 2018

Reduction: Union

▶ Induction: A|B

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle A|B \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\},$ $\delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})$

CMSC 330 Spring 2018

Reduction: Closure

▶ Induction: A*

• $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$

Reduction: Closure

▶ Induction: A*

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$ $\delta_A \cup \{(f_A,\epsilon,S1), (S0,\epsilon,q_A), (S0,\epsilon,S1), (S1,\epsilon,S0)\})$

Quiz 2: Which NFA matches a*?

Quiz 2: Which NFA matches a*?

Quiz 3: Which NFA matches a b ?

Quiz 3: Which NFA matches a b ?

Reduction Complexity

▶ Given a regular expression A of size n...

Size = # of symbols + # of operations

- How many states does <A> have?
 - Two added for each |, two added for each *
 - O(n)
 - That's pretty good!

Reducing NFA to DFA

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - > Each DFA state represents a set of NFA "current states"
- Example

Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - > NFA (Σ , Q, q₀, F_n, δ)
 - Output
 - \rightarrow DFA (Σ , R, r₀, F_d, δ)
 - Using two subroutines
 - \triangleright ϵ -closure(δ , p) (and ϵ -closure(δ , S))
 - > move(δ , p, a) (and move(δ , S, a))

ε-transitions and ε-closure

- ▶ We say $p \xrightarrow{\epsilon} q$
 - If it is possible to go from state p to state q by taking only ϵ -transitions in δ
 - If \exists p, p₁, p₂, ... p_n, q \in Q such that \triangleright {p, ϵ ,p₁} \in δ , {p₁, ϵ ,p₂} \in δ , ..., {p_n, ϵ ,q} \in δ
- ε-closure(δ, p)
 - Set of states reachable from p using ε-transitions alone
 - > Set of states q such that p $\stackrel{\epsilon}{\longrightarrow}$ q according to δ
 - > ϵ -closure(δ , p) = {q | p $\stackrel{\epsilon}{\rightarrow}$ q in δ }
 - > ε-closure(δ, Q) = { q | p ∈ Q, $p \xrightarrow{\epsilon}$ q in δ }
 - Notes
 - > ε-closure(δ, p) always includes p
 - > We write ε-closure(p) or ε-closure(Q) when δ is clear from context

ε-closure: Example 1

Following NFA contains

- S1 $\stackrel{\epsilon}{\rightarrow}$ S2
- S2 $\stackrel{\varepsilon}{\rightarrow}$ S3
- S1 $\stackrel{\epsilon}{\rightarrow}$ S3
 - ightharpoonup Since S1 $\stackrel{\mathcal{E}}{\rightarrow}$ S2 and S2 $\stackrel{\mathcal{E}}{\rightarrow}$ S3

ε-closures

- ϵ -closure(S1) = { S1, S2, S3 }
- ϵ -closure(S2) = { S2, S3 }
- ϵ -closure(S3) = {S3}
- ϵ -closure({ S1, S2 }) = { S1, S2, S3 } \cup { S2, S3 }

ε-closure: Example 2

Following NFA contains

- S1 $\stackrel{\varepsilon}{\rightarrow}$ S3
- S3 $\stackrel{\varepsilon}{\rightarrow}$ S2
- S1 $\stackrel{\varepsilon}{\rightarrow}$ S2
 - > Since S1 $\stackrel{\mathcal{E}}{\rightarrow}$ S3 and S3 $\stackrel{\mathcal{E}}{\rightarrow}$ S2

ε-closures

- ϵ -closure(S1) = { S1, S2, S3 }
- ε-closure(S2) = { S2 }
- ϵ -closure(S3) = { S2, S3 }
- ϵ -closure({ S2,S3 }) = { S2 } \cup { S2, S3 }

ε-closure Algorithm: Approach

Input: NFA (Σ, Q, q₀, F₀, δ), State Set R

Output: State Set R'

Algorithm

This algorithm computes a fixed point

see note linked from project description

ε-closure Algorithm Example

► Calculate ε-closure(δ,{S1})

R R'

{S1} {S1}

{S1} {S1, S2}

{S1, S2} {S1, S2, S3}

{S1, S2, S3} {S1, S2, S3}


```
Let R' = R
Repeat
Let R= R'
Let R' = R \cup {q | p \in R, (p, \epsilon, q) \in \delta}
Until R = R'
```

Calculating move(p,a)

- move(δ,p,a)
 - Set of states reachable from p using exactly one transition on a
 - > Set of states q such that $\{p, a, q\} \in \delta$
 - \rightarrow move(δ ,p,a) = { q | {p, a, q} $\in \delta$ }
 - > move(δ ,Q,a) = { q | p ∈ Q, {p, a, q} ∈ δ }
 - i.e., can "lift" move() to start from a set of states Q
 - Notes:
 - > move(δ,p,a) is Ø if no transition (p,a,q) ∈ δ, for any q
 - > We write move(p,a) or move(R,a) when δ clear from context

move(a,p): Example 1

Following NFA

•
$$\Sigma = \{ a, b \}$$

Move

- move(S1, a) = { S2, S3 }
- move(S1, b) = Ø
- move(S2, a) = Ø
- move(S2, b) = { S3 }
- move(S3, a) = Ø
- $move(S3, b) = \emptyset$

$$move({S1,S2},b) = {S3}$$

move(a,p): Example 2

Following NFA

•
$$\Sigma = \{ a, b \}$$

Move

- move(S1, a) = { S2 }
- move(S1, b) = { S3 }
- move(S2, a) = { S3 }
- move(S2, b) = Ø
- move(S3, a) = Ø
- $move(S3, b) = \emptyset$

 $move({S1,S2},a) = {S2,S3}$

NFA → DFA Reduction Algorithm ("subset")

- ▶ Input NFA (Σ , Q, q₀, F_n, δ), Output DFA (Σ , R, r₀, F_d, δ ')
- Algorithm

```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
      Mark r
      For each a \in \Sigma
            Let E = move(\delta, r, a)
            Let e = \varepsilon-closure(\delta,E)
            If e ∉ R
                  Let R = R \cup \{e\}
            Let \delta' = \delta' \cup \{r, a, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

```
// DFA start state
// process DFA state r
// each state visited once
// for each letter a
// states reached via a
// states reached via ε
// if state e is new
// add e to R (unmarked)
// add transition r→e
// final if include state in F<sub>n</sub>
```

NFA → DFA Example 1

• Start = ε -closure(δ ,S1) = { {S1,S3} } • R = { {S1,S3} } • r \in R = {S1,S3} • move(δ ,{S1,S3},a) = {S2} • e = ε -closure(δ ,{S2}) = {S2} • R = R \cup {{S2}} = { {S1,S3}, {S2} } • δ ' = δ ' \cup {{S1,S3}, a, {S2}} • move(δ ,{S1,S3},b) = \emptyset • move(δ ,{S1,S3},b) = \emptyset

CMSC 330 Spring 2018 45

NFA → DFA Example 1 (cont.)

- R = { {S1,S3}, {S2} }
- $r \in R = \{S2\}$
- move(δ ,{S2},a) = Ø
- $move(\delta, \{S2\}, b) = \{S3\}$
 - \triangleright e = ε -closure(δ ,{S3}) = {S3}
 - \Rightarrow R = R \cup {{S3}} = { {S1,S3}, {S2}, {S3} }
 - $> \delta' = \delta' \cup \{\{S2\}, b, \{S3\}\}\}$

NFA

DFA

NFA → DFA Example 1 (cont.)

- R = { {S1,S3}, {S2}, {S3} }
- $r \in R = \{S3\}$
- Move($\{S3\}$,a) = Ø
- Move($\{S3\}$,b) = Ø
- Mark {S3}, exit loop
- F_d = {{\$1,\$3}, {\$3}}
 Since \$3 ∈ F_n
- Done!

Quiz 4: Which DFA is equiv to this NFA?

CMSC 330 Spring 2018 49

Quiz 4: Which DFA is equiv to this NFA?

Actual Answer

Subset Algorithm as a Fixed Point

▶ Input: NFA $(\Sigma, Q, q_0, F, \delta)$

Output: DFA M'

Algorithm

```
Let q_0' = \epsilon-closure(\delta, q_0)
  Let F' = \{q_0'\} if q_0' \cap F \neq \emptyset, or \emptyset otherwise
  Let M' = (\Sigma, \{q_0'\}, q_0', F', \emptyset)
                                                              // starting approximation of
      DFA
  Repeat
        Let M = M'
                                                   // current DFA approx
        For each q \in states(M), a \in \Sigma // for each DFA state q and letter a
             Let s = \varepsilon-closure(\delta, move(\delta, q, a)) // new subset from q
             Let F' = \{s\} if s \cap F \neq \emptyset, or \emptyset otherwise, // subset contains final?
             M' = M' \cup (\emptyset, \{s\}, \emptyset, F', \{(q, a, s)\}) // update DFA
                                                   // reached fixed point
  Until M' = M
CMSC 330 Spring 2018
                                                                                             57
```

Redux: DFA to NFA Example 1

- $q_0' = \epsilon$ -closure(δ ,S1) = {S1,S3}
- $F' = \{\{S1,S3\}\} \text{ since } \{S1,S3\} \cap \{S3\} \neq \emptyset$

NFA

DFA

•
$$M' = \{ \Sigma, \{ \{S1,S3\} \}, \{S1,S3\} \}, \{ \{S1,S3\} \}, \emptyset \}$$
Q'
 q_0'
F'
 δ'

Redux: DFA to NFA Example 1 (cont)

- $M' = \{ \Sigma, \{ \{S1,S3\} \}, \{S1,S3\} \}, \{ \{S1,S3\} \}, \emptyset \}$
 - $q = \{S1, S3\}$
 - a = a
 - $s = \{S2\}$
 - > since move(δ ,{S1, S3},a) = {S2}
 - \triangleright and ε -closure(δ ,{S2}) = {S2}
 - \bullet F' = \emptyset
 - > Since {S2} ∩ {S3} = Ø
 - > where s = {S2} and F = {S3}

- $M' = M' \cup (\emptyset, \{\{S2\}\}, \emptyset, \emptyset, \{(\{S1,S3\},a,\{S2\})\})$
- $= \{ \sum_{s=1}^{\infty}, \{ \{s_1, s_3\}, \{s_1, s_3\}, \{\{s_1, s_3\}\}, \{\{\{s_1, s_3\}\}, \{\{\{s_1, s_3\}\}, \{\{s_1, s_3\}\}, \{\{s_1, s_3\}\}, \{\{\{s_1, s_3\}\}, \{\{s_1, s_3\}\}, \{\{\{s_1, s_3\}\}, \{\{s_1, s_3\}\}, \{\{\{s_1, s_3\}\}, \{\{s_1, s_3\}\}, \{\{s_1, s_2\}\}, \{\{s_1, s_3\}\}, \{\{s_1, s_2\}\}, \{\{s_1, s_2\}\}, \{\{s_1, s_2\}\}, \{\{s_1, s_3\}\}, \{\{s_1, s_2\}\}, \{\{s_1, s_2$ 59

Redux: DFA to NFA Example 1 (cont)

- $M' = \{ \Sigma, \{ \{S1,S3\}, \{S2\} \}, \{S1,S3\}, \{ \{S1,S3\} \}, \{ (\{S1,S3\},a,\{S2\}) \} \} \}$
 - $q = \{S2\}$
 - a = b
 - $s = \{S3\}$
 - > since move(δ ,{S2},b) = {S3}
 - > and ε-closure(δ ,{S3}) = {S3}
 - $F' = \{\{S3\}\}\}$
 - \Rightarrow Since {S3} \cap {S3} = {S3}
 - where s = {S3} and F = {S3}

(Ø, {{S3}}, Ø, {{S3}}, {({S2},b,{S3})})

 $= \{ \sum, \{\{S1,S3\},\{S2\},\{S3\}\}, \{S1,S3\}, \{\{S1,S3\},\{S3\}\}, \{(\{S1,S3\},a,\{S2\}), (\{S2\},b,\{S3\})\} \} \}$ CMSC 330 Spring 2018 CMSC 330 Spring 2018

Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2ⁿ states
 - > Since a set with n items may have 2ⁿ subsets
 - Corollary
 - Reducing a NFA with n states may be O(2n)

Reducing DFA to RE

CMSC 330 Spring 2018 62

Reducing DFAs to REs

General idea

- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA

CMSC 330 Spring 2018 63

Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language

J. Hopcroft, "An n log n algorithm for minimizing states in a finite automaton," 1971

Minimizing DFA: Hopcroft Reduction

Intuition

- Look to distinguish states from each other
 - > End up in different accept / non-accept state with identical input

Algorithm

- Construct initial partition
 - Accepting & non-accepting states
- Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- Update transitions & remove dead states

Splitting Partitions

- No need to split partition {S,T,U,V}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states

Splitting Partitions (cont.)

- Need to split partition {S,T,U} into {S,T}, {U}
 - Transitions on a from S,T lead to partition P2
 - Transition on a from U lead to partition P3

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition {S,T,U}
 - After splitting partition {X,Y} into {X}, {Y} we need to split partition {S,T,U} into {S,T}, {U}

DFA

Initial partitions

Split partition

DFA

- Initial partitions
 - Accept {R}
 - Reject { S, T }
- ▶ Split partition? → Not required, minimization done
 - $move(S,a) = T \in P2$
 - $move(T,a) = T \in P2$

- $move(S,b) = R \in P1$
- move $(T,b) = R \in P1$

CMSC 330 Spring 2018 74

DFA

- Initial partitions
 - Accept {R}
 - Reject { S, T }
- = P1
- = P2
- Split partition? → Yes, different partitions for B

 - $move(T,a) = T \in P2$ $move(T,b) = R \in P1$
 - $move(S,a) = T \in P2$ $move(S,b) = T \in P2$

DFA

already

minimal

Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA

$$> \Sigma = \{a,b\}$$

Complement of DFA

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state
 & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?

Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA


```
cur state = 0;
while (1) {
  symbol = getchar();
  switch (cur state) {
   case 0: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("rejected\n"); return 0;
                        printf("rejected\n"); return 0;
              default:
           break;
   case 1: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("accepted\n"); return 1;
                        printf("rejected\n"); return 0;
              default:
           break;
   default: printf("unknown state; I'm confused\n");
             break:
```

CMSC 330 Spring 2018 80

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components (\Sigma, Q, q_0, F, \delta) of a DFA: let q = q_0 while (there exists another symbol s of the input string) q := \delta(q, s); if q \in F then accept else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

Running Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is O(|s|)
 - Can't get much faster!
- Constructing DFA for RE A may take O(2|A|) time
 - But usually not the case in practice
- So there's the initial overhead
 - But then processing strings is fast

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - > Concatenation, union, closure
 - NFA → DFA
 - > ε-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation