
CMSC 330: Organization of
Programming Languages

Array, Hashes, Code Blocks, Equality

1CMSC 330 - Spring 2018

Arrays and Hashes

Ruby data structures are typically constructed
from Arrays and Hashes
• Built-in syntax for both
• Each has a rich set of standard library methods
• They are integrated/used by methods of other

classes

2CMSC 330 - Spring 2018

Array

Arrays of objects are instances of class Array
• Arrays may be heterogeneous

a = [1, "foo", 2.14]

C-like syntax for accessing elements
• indexed from 0

• return nil if no element at given index
irb(main):001:0> b = []; b[0] = 0; b[0]

=> 0

irb(main):002:0> b[1] # no element at this index

=> nil

3CMSC 330 - Spring 2018

Arrays Grow and Shrink

Arrays are growable

• Increase in size automatically as you access

elements

irb(main):001:0> b = []; b[0] = 0; b[5] = 0; b

=> [0, nil, nil, nil, nil, 0]

• [] is the empty array, same as Array.new

Arrays can also shrink

• Contents shift left when you delete elements

a = [1, 2, 3, 4, 5]

a.delete_at(3) # delete at position 3; a = [1,2,3,5]

a.delete(2) # delete element = 2; a = [1,3,5]

4CMSC 330 - Spring 2018

Iterating Through Arrays

It's easy to iterate over an array with while
• length method returns array’s current length

Looping through elements of an array is common
• We’ll see a better way soon, using code blocks

a = [1,2,3,4,5]
i = 0
while i < a.length

puts a[i]
i = i + 1

end

5CMSC 330 - Spring 2018

Arrays as Stacks and Queues

Arrays can model stacks and queues
a = [1, 2, 3]
a.push("a") # a = [1, 2, 3, "a"]
x = a.pop # x = "a"
a.unshift("b") # a = ["b", 1, 2, 3]
y = a.shift # y = "b"

Note that push, pop,
shift, and unshift
all permanently
modify the array

6CMSC 330 - Spring 2018

Hash

A hash acts like an associative array
• Elements can be indexed by any kind of values
• Every Ruby object can be used as a hash key,

because the Object class has a hash method

Elements are referred to like array elements
italy = Hash.new
italy["population"] = 58103033
italy["continent"] = "europe"
italy[1861] = "independence”
pop = italy[“population”] # pop is 58103033
planet = italy[“planet”] # planet is nil

7CMSC 330 - Spring 2018

Hash methods

new(o) returns hash whose default value is o
• h = Hash.new(“fish”); h[“go”] # returns “fish”

values returns array of a hash’s values
keys returns an array of a hash’s keys
delete(k) deletes mapping with key k
has_key?(k) is true if mapping with key k present
• has_value?(v) is similar

8CMSC 330 - Spring 2018

Hash creation

Convenient syntax for creating literal hashes
• Use { key => value, ... } to create hash table

• Use { } for the empty hash

credits = {
"cmsc131" => 4,
"cmsc330" => 3,

}

x = credits["cmsc330"] # x now 3
credits["cmsc311"] = 3

9CMSC 330 - Spring 2018

Quiz 1: What is the output

A. Error
B. barbaz
C. bazbar
D. baznilbar

a = {“foo” => “bar”}
a[0] = ”baz”
print a[0]
print a[1]
print a[“foo”]

10CMSC 330 - Spring 2018

Quiz 1: What is the output

A. Error
B. barbaz
C. bazbar
D. baznilbar

a = {“foo” => “bar”}
a[0] = ”baz”
print a[0]
print a[1]
print a[“foo”]

11CMSC 330 - Spring 2018

Quiz 2: What is the output

A. Green
B. (nothing)
C. Error
D. Blue

a = { “Yellow” => [] }
a[“Yellow”] = {}
a[“Yellow”][“Red”] = [“Green”, “Blue”]
puts a[“Yellow”][“Red”][1]

12CMSC 330 - Spring 2018

Quiz 2: What is the output

A. Green
B. (nothing)
C. Error
D. Blue

a = { “Yellow” => [] }
a[“Yellow”] = {}
a[“Yellow”][“Red”] = [“Green”, “Blue”]
puts a[“Yellow”][“Red”][1]

13CMSC 330 - Spring 2018

Quiz 3: What is the output

A. 2
B. 1
C. 0
D. (nothing)

a = [1,2,3]
a[1] = 0
a.push(1)
print a[1]

14CMSC 330 - Spring 2018

Quiz 3: What is the output

A. 2
B. 1
C. 0
D. (nothing)

a = [1,2,3]
a[1] = 0
a.push(1)
print a[1]

15CMSC 330 - Spring 2018

Code Blocks

A code block is a piece of code that is invoked
by another piece of code

Code blocks are useful for encapsulating
repetitive computations

16CMSC 330 - Spring 2018

Array Iteration with Code Blocks

The Array class has an each method
• Takes a code block as an argument

a = [1,2,3,4,5]
a.each { |x| puts x }

code block delimited by
{ }�s or do...end parameter name

(optional)

body

17CMSC 330 - Spring 2018

More Examples of Code Block Usage
Sum up the elements of an array

Print out each segment of the string as divided
up by commas (commas are printed trailing
each segment)
• Can use any delimiter

a = [1,2,3,4,5]
sum = 0
a.each { |x| sum = sum + x }
printf("sum is %d\n", sum)

s = "Student,Sally,099112233,A"
s.split(',').each { |x| puts x }

(�delimiter� = symbol used to denote boundaries)
18CMSC 330 - Spring 2018

Yet More Examples of Code Blocks

• n.times runs code block n times
• n.upto(m) runs code block for integers n..m
• a.find returns first element x of array such that the

block returns true for x
• a.collect applies block to each element of array and

returns new array (a.collect! modifies the original)

3.times { puts "hello"; puts "goodbye" }
5.upto(10) { |x| puts(x + 1) }
[1,2,3,4,5].find { |y| y % 2 == 0 }
[5,4,3].collect { |x| -x }

19CMSC 330 - Spring 2018

Still Another Example of Code Blocks

• open method takes code block with file argument
Ø File automatically closed after block executed

• readlines reads all lines from a file and returns an
array of the lines read
Ø Use each to iterate

• Can do something similar on strings directly:
• "r1\nr2\n\nr4".each_line { |rec| puts rec }

Ø Apply code block to each newline-separated substring

File.open("test.txt", "r") do |f|
f.readlines.each { |line| puts line }

end

20

alternative syntax: do … end instead of { … }

CMSC 330 - Spring 2018

Code Blocks for Hashes

Can iterate over keys and values separately
population.keys.each { |k|

print “key: ”, k, “ value: ”, population[k]
}

popluation.values.each { |v|
print “value: ”, v

}

21

population = {}
population[“USA”] = 319
population[“Italy”] = 60
population.each { |c,p|

puts “population of #{c} is #{p} million”
}

key

value

CMSC 330 - Spring 2018

Using Yield To Call Code Blocks
Any method can be called with a code block
• Inside the method, the block is called with yield

After the code block completes
• Control returns to the caller after the yield instruction
def countx(x)
for i in (1..x)

puts i
yield

end
end

countx(4) { puts "foo" }

1
foo
2
foo
3
foo
4
foo

22CMSC 330 - Spring 2018

So What Are Code Blocks?

A code block is just a special kind of method
• { |y| x = y + 1; puts x } is almost the same as
• def m(y) x = y + 1; puts x end

The each method takes a code block as a
parameter
• This is called higher-order programming

Ø In other words, methods take other methods as arguments
Ø We�ll see a lot more of this in OCaml

We’ll see other library classes with each methods
• And other methods that take code blocks as arguments
• As we saw, your methods can use code blocks too!

23CMSC 330 - Spring 2018

Quiz 4: What is the output

A. 10
B. 100
C. (Nothing)
D. Error

a = [5,10,15,20]
a.each { |x| x = x*x }
puts a[1]

24CMSC 330 - Spring 2018

Quiz 4: What is the output

A. 10
B. 100
C. (Nothing)
D. Error

a = [5,10,15,20]
a.each { |x| x = x*x }
puts a[1]

25CMSC 330 - Spring 2018

Quiz 5: What is the output

A. 3
B. 3 9
C. 9 81
D. 9 nil

def myFun(x)
yield x
end
myFun(3) { |v| puts "#{v} #{v*v}” }

26CMSC 330 - Spring 2018

Quiz 5: What is the output

A. 3
B. 3 9
C. 9 81
D. 9 nil

def myFun(x)
yield x
end
myFun(3) { |v| puts "#{v} #{v*v}” }

27CMSC 330 - Spring 2018

Ranges

1..3 is an object of class Range
• Integers between 1 and 3 inclusively

1…3 also has class Range
• Integers between 1 and 3 but not including 3 itself.

Not just for integers
• ‘a’..’z’ represents the range of letters ‘a’ to ‘z’
• 1.3…2.7 is the continuous range [1.3,2.7)

Ø (1.3…2.7).include? 2.0 # => true

Discrete ranges offer the each method to iterate
• And can convert to an array via to_a; e.g., (1..2).to_a

28CMSC 330 - Spring 2018

Object Copy vs. Reference Copy

Consider the following code
• Assume an object/reference model like Java or Ruby

Ø Or even two pointers pointing to the same structure

Which of these occur?

Object copy Reference copy

x = "groundhog" ; y = x

x "groundhog"
(reference) (object)

y "groundhog"

x
(reference) "groundhog"

(object)
y

29CMSC 330 - Spring 2018

Object Copy vs. Reference Copy (cont.)

For
• Ruby and Java would both do a reference copy

But for

• Ruby would cause an object copy
• Unnecessary in Java since Strings are immutable

x = "groundhog"
y = String.new(x)

x = "groundhog" ; y = x

30CMSC 330 - Spring 2018

Physical vs. Structural Equality

Consider these cases again:

If we compare x and y, what is compared?
• The references, or the contents of the objects they

point to?
If references are compared (physical equality)
the first would return false but the second true
If objects are compared both would return true

x "groundhog"
(reference) (object)

y "groundhog"

x
(reference) "groundhog"

(object)
y

31CMSC 330 - Spring 2018

String Equality

In Java, x == y is physical equality, always
• Compares references, not string contents

In Ruby, x == y for strings uses structural equality
• Compares contents, not references
• == is a method that can be overridden in Ruby!
• To check physical equality, use the equal? method

Ø Inherited from the Object class

It’s always important to know whether you’re
doing a reference or object copy
• And physical or structural comparison

32CMSC 330 - Spring 2018

Comparing Equality
Language Physical equality Structural equality
Java a == b a.equals(b)

C a == b *a == *b

Ruby a.equal?(b) a == b

Ocaml a == b a = b

Python a is b a == b

Scheme (eq? a b) (equal? a b)

Visual Basic .NET a Is b a = b

33CMSC 330 - Spring 2018

Quiz 6: Which is true?

a) Structural equality implies physical equality
b) Physical equality implies structural equality
c) Physical equality does not work for cyclic data

structures
d) == always means physical equality

CMSC 330 - Spring 2018 34

Quiz 6: Which is true?

a) Structural equality implies physical equality
b) Physical equality implies structural equality
c) Physical equality does not work for cyclic data

structures
d) == always means physical equality

CMSC 330 - Spring 2018 35

