CMSC 330: Organization of
Programming Languages

Array, Hashes, Code Blocks, Equality

CMSC 330 - Spring 2018

Arrays and Hashes

» Ruby data structures are typically constructed
from Arrays and Hashes

* Built-in syntax for both
* Each has a rich set of standard library methods

* They are integrated/used by methods of other
classes

CMSC 330 - Spring 2018

Array

» Arrays of objects are instances of class Array
* Arrays may be heterogeneous
a=[1, "foo", 2.14]
» C-like syntax for accessing elements
* indexed from O

* return nil if no element at given index
irb(main):001:0> b = []; b[0] = 0; b[0]
=> ()
irb(main):002:0> b[1] # no element at this index
=> nil

CMSC 330 - Spring 2018

Arrays Grow and Shrink

» Arrays are growable

* Increase in size automatically as you access
elements
irb(main):001:0> b = []; b[0] = 0; b[5] = 0; b
=> [0, nil, nil, nil, nil, 0]

* []is the empty array, same as Array.new

» Arrays can also shrink
* Contents shift left when you delete elements

a=1[1,2,3,4,5]
a.delete_at(3) # delete at position 3; a =[1,2,3,9]
a.delete(2) # delete element = 2; a = [1,3,9]

CMSC 330 - Spring 2018

lterating Through Arrays

» It's easy to iterate over an array with while
* length method returns array’s current length

a=1[1,2,3,4,5]

i=0

while i < a.length
puts a[i]
i=3i+1

end

» Looping through elements of an array is common
* We'll see a better way soon, using code blocks

CMSC 330 - Spring 2018 5

Arrays as Stacks and Queues

» Arrays can model stacks and queues

a=[1,2, 3]
a_pUSh("a") # a — [1’ 2, 3’ "a"]
X = a.pop #x="a"

a.unshift("b") #a=["b", 1, 2, 3]
y = a.shift #y="b"

Note that push, pop,
shift, and unshift

all permanently
modify the array

CMSC 330 - Spring 2018

Hash

» A hash acts like an associative array
* Elements can be indexed by any kind of values

* Every Ruby object can be used as a hash key,
because the Object class has a hash method

» Elements are referred to like array elements
italy = Hash.new
italy["population"] = 58103033
italy["continent"] = "europe"
italy[1861] = "independence”
pop = italy[“population”] # pop is 58103033
planet = italy[“planet”] # planet is nil

CMSC 330 - Spring 2018

Hash methods

» new(o) returns hash whose default value is o
* h =Hash.new("fish”); h[‘go”] # returns “fish”

» values returns array of a hash’s values

» Keys returns an array of a hash’s keys

» delete(k) deletes mapping with key k

» has key?(k) is true if mapping with key k present

* has _value?(v) is similar

CMSC 330 - Spring 2018 8

Hash creation

Convenient syntax for creating literal hashes
* Use { key => value, ... } to create hash table

credits = {
"cmscl3l" => 4,
"cmsc330" => 3,

}

X = credits["cmsc330"] # x now 3
credits["cmsc31l1l"] = 3

* Use {} for the empty hash

CMSC 330 - Spring 2018

Quiz 1: What is the output

a = {“foo” => “bar”}
a[0] = "baz”

print a[0]

print a[l]

print a[“foo”]

A. Error
B. barbaz
c. bazbar

p. baznilbar

CMSC 330 - Spring 2018

10

Quiz 1: What is the output

a = {“foo” => “bar”}
a[0] = "baz”

print a[0]

print a[l]

print a[“foo”]

A. Error
B. barbaz
c. bazbar

p. baznilbar

CMSC 330 - Spring 2018

11

Quiz 2: What is the output

a = { “Yellow” => [] }
a[“Yellow”] = {}

a[“Yellow”] ["Red”] = [“Green”,
puts a[“Yellow”] [“"Red”][1]

A Green

B. (hothing)
c. Error

p. Blue

CMSC 330 - Spring 2018

“Blue”]

12

Quiz 2: What is the output

a = { “Yellow” => [] }
a[“Yellow”] = {}

a[“Yellow”] ["Red”] = [“Green”,
puts a[“Yellow”] [“"Red”][1]

A Green

B. (hothing)
c. Error

p. Blue

CMSC 330 - Spring 2018

“Blue”]

13

Quiz 3: What is the output

a=[1,2,3]
a[l] =0
a.push(1l)
print a[l]

A 2

B. 1

c. O

p. (nothing)

CMSC 330 - Spring 2018

14

Quiz 3: What is the output

a=[1,2,3]
a[l] =0
a.push(1l)
print a[l]

A 2

B. 1

c. O

p. (nothing)

CMSC 330 - Spring 2018

15

Code Blocks

» A code block is a piece of code that is invoked
by another piece of code

» Code blocks are useful for encapsulating
repetitive computations

CMSC 330 - Spring 2018

16

Array lteration with Code Blocks

» The Array class has an each method
* Takes a code block as an argument

a =

a.each { |x| puts x }

[1,2,3,4,5]

code block delimited by
{} s ordo...end

CMSC 330 - Spring 2018

RN

parameter name
(optional)

body

17

More Examples of Code Block Usage

» Sum up the elements of an array

a=1[1,2,3,4,5]

sum = 0

a.each { |x| sum = sum + x }
printf ("sum is %d\n", sum)

» Print out each segment of the string as divided
up by commas (commas are printed trailing
each segment)

* Can use any delimiter

s = "Student,Sally,099112233,A"
s.split(',') .each { |x| puts x }

(“delimiter” = symbol used to denote boundaries)
CMSC 330 - Spring 2018 18

Yet More Examples of Code Blocks

3.times { puts "hello"; puts "goodbye" }
5.upto(10) { |x| puts(x + 1) }
[1,2,3,4,5] .find { |yl v % 2 == 0 }
[5,4,3] .collect { |x| -x }

 n.times runs code block n times
* n.upto(m) runs code block for integers n..m

* a.find returns first element x of array such that the
block returns true for x

a.collect applies block to each element of array and
returns new array (a.collect! modifies the original)

CMSC 330 - Spring 2018 19

Still Another Example of Code Blocks

File.open("test.txt", "r" |f|
.readlines.each { |line[™puts line }

alternative syntax: do ... end instead of { ... }

* open method takes code block with file argument
> File automatically closed after block executed

 readlines reads all lines from a file and returns an
array of the lines read
> Use each to iterate

* Can do something similar on strings directly:

* "r\nr2\n\nr4".each_line { |rec| puts rec }
» Apply code block to each newline-separated substring

CMSC 330 - Spring 2018 20

Code Blocks for Hashes

Key

population = {}
population[“USA”] = 319
population[“Italy”] = ‘é — value

population.each { |c,p
puts “population of #{c} is #{p} million”

}

» Can iterate over keys and values separately

population.keys.each { |k]|
print “key: ”, k, Y wvalue: ”, population|[k]
}

popluation.values.each { |v]|

print “value: ", v

}

CMSC 330 - Spring 2018

21

Using Yield To Call Code Blocks

» Any method can be called with a code block
* Inside the method, the block is called with yield

» After the code block completes
* Control returns to the caller after the yield instruction

def countx(x) 1
foriin (1..x) foo
puts i 2

yield foo
end 3

end foo
4

countx(4) { puts "foo" } foo

CMSC 330 - Spring 2018

So What Are Code Blocks?

» A code block is just a special kind of method
 {|ly|x=y+1; puts x } is almost the same as
 defm(y) x =y + 1; puts x end

» The each method takes a code block as a

parameter

* This is called higher-order programming
> In other words, methods take other methods as arguments
> We' |l see a lot more of this in OCaml

» We'll see other library classes with each methods
* And other methods that take code blocks as arguments
* As we saw, your methods can use code blocks too!

CMSC 330 - Spring 2018 23

Quiz 4: What is the output

a = 1[5,10,15,20]
a.each { |x| x = x*x }
puts a[l]

A 10

. 100

c. (Nothing)
p. Error

CMSC 330 - Spring 2018 24

Quiz 4: What is the output

a = 1[5,10,15,20]
a.each { |x| x = x*x }
puts a[l]

A 10

. 100

c. (Nothing)
p. Error

CMSC 330 - Spring 2018 25

Quiz 5: What is the output

def myFun (x)

yield x
end
myFun (3) {

A3

B. 39
c. 981
p. 9 nil

CMSC 330 - Spring 2018

|v| puts "#{v} #{v*v}” }

26

Quiz 5: What is the output

def myFun (x)

yield x
end
myFun (3) {

A3

B. 39
c. 981
p. 9 nil

CMSC 330 - Spring 2018

|v| puts "#{v} #{v*v}” }

27

Ranges

» 1..3 Is an object of class Range
* Integers between 1 and 3 inclusively

» 1...3 also has class Range
* Integers between 1 and 3 but not including 3 itselr.

» Not just for integers

e ‘a'..'z' represents the range of letters ‘a’ to 'z

¢ 1.3...2.7 is the continuous range [1.3,2.7)
> (1.3...2.7).include? 2.0 # => true

» Discrete ranges offer the each method to iterate
* And can convert to an array via to_a; e.g., (1..2).to_a

CMSC 330 - Spring 2018 28

Object Copy vs. Reference Copy

» Consider the following code

* Assume an object/reference model like Java or Ruby
> Or even two pointers pointing to the same structure

x = "groundhog" ; y = x

» Which of these occur?

p 4 > "groundhog" X
(reference) (object) (rem "groundhog"

/ (object)
V4 > ""groundhog" Y

Object copy Reference copy

CMSC 330 - Spring 2018 29

Object Copy vs. Reference Copy (cont.)

» For x = '"'groundhog" ; y = x

* Ruby and Java would both do a reference copy

X
y

"groundhog"
String.new (x)

» But for

* Ruby would cause an object copy
* Unnecessary in Java since Strings are immutable

CMSC 330 - Spring 2018 30

Physical vs. Structural Equality

» Consider these cases again:

X > "groundhog" X
(reference) (object) (rem "groundhog"
(object)

Y > ""groundhog" Y

» |If we compare x and y, what is compared?

* The references, or the contents of the objects they
point to?

» |f references are compared (physical equality)
the first would return false but the second true

» If objects are compared both would return true

CMSC 330 - Spring 2018 31

String Equality

» In Java, x ==y is physical equality, always
* Compares references, not string contents

» In Ruby, x ==y for strings uses structural equality
 Compares contents, not references
* ==|s a method that can be overridden in Ruby!

* To check physical equality, use the equal? method
> Inherited from the Object class

» It's always important to know whether you're
doing a reference or object copy

* And physical or structural comparison

CMSC 330 - Spring 2018 32

Comparing Equality

Language

=
O ‘m
<
Q

Rub

Ocaml

Python

Scheme

Visual Basic .NET

:

CMSC 330 - Spring 2018

Physical equality
a ==

a ==

a.equal?(b)

a ==

aisb

(eq? a b)

alsb

Structural equality
a.equals(b)

*a=="b

a ==

a=b

q ==

(equal? a b)

a=b

33

Quiz 6: Which is true?

a) otructural equality implies physical equality
by Physical equality implies structural equality

¢y Physical equality does not work for cyclic data
structures

d) == always means physical equality

CMSC 330 - Spring 2018 34

Quiz 6: Which is true?

a) otructural equality implies physical equality
by Physical equality implies structural equality

¢y Physical equality does not work for cyclic data
structures

d) == always means physical equality

CMSC 330 - Spring 2018 35

