CMSC 330: Organization of
Programming Languages

Context Free Grammars

CMSC 330 Spring 2018

Architecture of Compilers, Interpreters

An- Opt- Code
Source alyzer || imizer || Generator

Abstract
Syntax Tree

Front End Back End

Compiler / Interpreter

CMSC 330 Spring 2018

Front End — Scanner and Parser

Front End
AST

e Scanner / lexer converts program source into
tokens (keywords, variable names, operators,
numbers, etc.) using regular expressions

« Parser converts tokens into an AST (abstract
syntax tree) using context free grammars

CMSC 330 Spring 2018 4

Context-Free Grammar (CFG)

» A way of describing sets of strings (= languages)

* The notation L(G) denotes the language of strings
defined by grammar G

» Example grammarGisS —> 0S| 1S | ¢
which says that string s’ € L(G) iff
e ss=¢g,ords € L(G)suchthats’=0s,o0rs =1s

» Grammar is same as regular expression (0|1)*
* Generates / accepts the same set of strings

CMSC 330 Spring 2018 5

CFGs Are Expressive

» CFGs subsume REs, DFAs, NFAs

* There is a CFG that generates any regular language
* But: REs are often better notation for those languages

» And CFGs can define languages regexps cannot
* S (S)|e [/l represents balanced pairsof ()’ s

» As a result, CFGs often used as the basis of
parsers for programming languages

CMSC 330 Spring 2018 6

Parsing with CFGs

» CFGs formally define languages, but they do
not define an algorithm for accepting strings

» Several styles of algorithm; each works only for
less expressive forms of CFG

* LL(k) parsing - We will discuss this next lecture
* LR(K) parsing
* LALR(k) parsing
* SLR(k) parsing

» Tools exist for building parsers from grammars
* JavaCC, Yacc, etc.

CMSC 330 Spring 2018

Formal Definition: Context-Free Grammar

» ACFG Gisa4-tuple (2, N, P, S)

* 2 — alphabet (finite set of symbols, or terminals)
» Often written in lowercase

* N — a finite, nonempty set of nonterminal symbols

> Often written in UPPERCASE
> ltmustbethatNN 2 =Y

* P — a set of productions of the form N — (Z|N)*

» Informally: the nonterminal can be replaced by the string of
zero or more terminals / nonterminals to the right of the —

» Can think of productions as rewriting rules (more later)

* S € N - the start symbol

CMSC 330 Spring 2018

Notational Shortcuts

S — aBc // S is start symbol
A — aA

| b IIA—Db

| I[A— ¢

» A production is of the form
* |left-hand side (LHS) — right hand side (RHS)

» If not specified
* Assume LHS of first production is the start symbol

» Productions with the same LHS
* Are usually combined with |

» If a production has an empty RHS

e |[tmeansthe RHS is ¢

CMSC 330 Spring 2018

Backus-Naur Form

» Context-free grammar production rules are also
called Backus-Naur Form or BNF

* Designed by John Backus and Peter Naur

» Chair and Secretary of the Algol committee in the early
1960s. Used this notation to describe Algol in 1962

» A production A — B ¢ D is written in BNF as
<A> =c <D>
* Non-terminals written with angle brackets and uses
.= instead of —

* Often see hybrids that use ::= instead of — but drop
the angle brackets on non-terminals

CMSC 330 Spring 2018 10

Generating Strings

» We can think of a grammar as generating
strings by rewriting

» Example grammar G

S—>0S|15 | ¢
» Generate string 011 from G as follows:
S =0S [/ using S —» 0S
= 01S //using S —»> 1S
= 011S //using S —»> 1S
= 011 /[using S — ¢

CMSC 330 Spring 2018

11

Accepting Strings (Informally)

» Checking ifs € L(G) is called acceptance

* Algorithm: Find a rewriting starting from G’s start
symbol that yields s

* A rewriting is some sequence of productions
(rewrites) applied starting at the start symbol
» 011 € L(G) according to the previous rewriting

» Terminology
* Such a sequence of rewrites is a derivation or parse
* Discovering the derivation is called parsing

CMSC 330 Spring 2018 12

Derivations

» Notation
= indicates a derivation of one step
=3 iIndicates a derivation of one or more steps
=* iIndicates a derivation of zero or more steps

» Example
* S5 0S|1S ¢
» For the string 010
* S=05=015=010S = 010
« S=%010
* 010="010

CMSC 330 Spring 2018

13

Language Generated by Grammar

» L(G) the language defined by G is
L(G)={seZ*|S>*s)

* S is the start symbol of the grammar
* 2 is the alphabet for that grammar

» |In other words

* All strings over 2 that can be derived from the start
symbol via one or more productions

CMSC 330 Spring 2018 14

Quiz #1

» Consider the grammar
S—aS|T
T—->DbT|U
U—-cU]|¢

» Which of the following strings is generated by
this grammar?

A. ccc
B. aba
C.bab
D. ca

CMSC 330 Spring 2018

15

Quiz #1

» Consider the grammar
S—aS|T
T—->DbT|U
U—-cU]|¢

» Which of the following strings is generated by
this grammar?

A. ccc
B. aba
C.bab
D. ca

CMSC 330 Spring 2018

16

Quiz #2

» Consider the grammar
S—aS|T
T—-DbT|U
U—-cU]|¢
» Which of the following is a derivation of the
string bbc?
A.S=T= U= bU= bbU = bbcU = bbc
B.S = bT = bbT = bbU = bbcU = bbc
C.S=T=DbT = bbT = bbU = bbcU = bbc

D.S=T=bT = bTbT = bbT = bbcU = bbc

CMSC 330 Spring 2018 17

Quiz #2

» Consider the grammar
S—aS|T
T—-DbT|U
U—-cU]|¢
» Which of the following is a derivation of the
string bbc?
A.S=T= U= bU= bbU = bbcU = bbc
B.S = bT = bbT = bbU = bbcU = bbc

C.S=T=bT = bbT = bbU = bbcU = bbc

D.S=T=bT = bTbT = bbT = bbcU = bbc

CMSC 330 Spring 2018 18

Quiz #3

» Consider the grammar
S—aS|T
T—->DbT|U
U—-cU]|¢

» Which of the following regular expressions
accepts the same language as this grammar?

A. (alblc)*

B. abc®
C.a*b*c*

D. (alabljabc)*

CMSC 330 Spring 2018

19

Quiz #3

» Consider the grammar
S—aS|T
T—->DbT|U
U—-cU]|¢

» Which of the following regular expressions
accepts the same language as this grammar?

A. (alblc)*
B. abc*

C.a*b*c*
D. (alabljabc)*

CMSC 330 Spring 2018

20

Designing Grammars

1. Use recursive productions to generate an
arbitrary number of symbols
A— xAl|e /| Zero or more X' s
A—vyAly // One or more y' s

2. Use separate non-terminals to generate
disjoint parts of a language, and then combine

In a production

a*b* /l a’ s followed by b’ s
S — AB
A—aA|e /| Zero or more a’ s

B—bB]|¢ /| Zero or more b’ s

CMSC 330 Spring 2018 23

Designing Grammars

3. 1o generate languages with matching, balanced,
or related numbers of symbols, write productions
which generate strings from the middle

{a"b" | n = 0} /I N a’s followed by Nb's
S—aSb|¢

Example derivation: S = aSb = aaSbb = aabb
{a"b?" | n = 0} /I N a’s followed by 2N b’ s
S —aSbb | ¢

Example derivation: S = aSbb = aaSbbbb = aabbbb

CMSC 330 Spring 2018 24

Designing Grammars

4.

For a language that is the union of other
languages, use separate nonterminals for each
part of the union and then combine

{a"(b™c™) | m>n =0}

Can be rewritten as

{ab™ | m>nz=20}u{a’c™ | m>nz=0}

STV

T >aTb|U
U—Ub|b

V—-aVc|W
W —- Wc|c

CMSC 330 Spring 2018 25

Practice

» Try to make a grammar which accepts

* 0*[1* * O"M"where n 20
S—>A|B

A—O0A|e S—031]¢
B—->1B|¢

» Glve some example strings from this language

e S—>0]|1S
» 0,10, 110, 1110, 11110, ...

* What language is it, as a regexp?
> 1*0

CMSC 330 Spring 2018

26

Quiz #4

Which of the following grammars describes the
same language as 0"1™ where m=n ?

A. S— 051 |¢

B. S—»051|3S1]¢
C. S—>0S1|0S|¢
D. S—>SS|0]|1]¢

CMSC 330 Spring 2018

27

Quiz #4

Which of the following grammars describes the
same language as 0"1™ where m=n ?

A. S— 051 |¢

B. S—>0S1|[S1]¢
C. S—>0S1|0S|¢
D. S—>SS|0]|1]¢

CMSC 330 Spring 2018

28

CFGs for Language Syntax

» When discussing operational semantics, we
used BNF-style grammars to define ASTs

e.=x|n|le+e|let x = e in e

* This grammar defined an AST for expressions
synonymous with an OCaml datatype

» We can also use this grammar to define a
language parser

* However, while it is fine for defining ASTs, this
grammar, if used directly for parsing, is ambiguous

CMSC 330 Spring 2018

Arithmetic Expressions

., E—>a|b|c|E+E|E-E | E*E | (E)
* An expression E is either a letter a, b, orc
* Or an E followed by + followed by an E
* efc...

» This describes (or generates) a set of strings
* {a, b, c, atb, a+a, a*c, a-(b*a), c*(b + a), ...}

» Example strings not in the language
* d, c(a), a+, b*c, efc.

CMSC 330 Spring 2018

30

Parse Trees

» Parse tree shows how a string is produced by a
grammar
* Root node is the start symbol
* Every internal node is a nonterminal

e Children of an internal node
» Are symbols on RHS of production applied to nonterminal

* Every leaf node is a terminal or €

» Reading the leaves left to right
* Shows the string corresponding to the tree

CMSC 330 Spring 2018 32

Parse Tree Example

S

S—aS|T
T—DbT|U
U—cU]|e

CMSC 330 Spring 2018

33

Parse Tree Example

S = aS

S—aS|T
T—DbT|U
U—cU]|e

CMSC 330 Spring 2018

34

Parse Tree Example

S=>aS = aTl

S—aS|T
T—DbT|U
U—cU]|e

CMSC 330 Spring 2018

35

Parse Tree Example

S=>aS>al =aU

S
SaS|T /N

S
T bT|U 2 ,
U—-cU]|e T
\
U

CMSC 330 Spring 2018

36

Parse Tree Example

S=>aS>=>al =alU = acU

S
S—aS|T /N
a S
T—DbT|U |
U—-cU]|e T
\
U

N

CMSC 330 Spring 2018

37

Parse Tree Example

S=>aS>=al =alU=acU > ac

S
S—aS|T /N
a S
T—DbT|U |
U—-cU]|e T
\
U

N

C

™ — C

CMSC 330 Spring 2018

38

Parse Trees for Expressions

» A parse tree shows the structure of an
expression as it corresponds to a grammar

E—al|b|c|d|E+E|E-E | E*E | (E)

a*c c*(b+d)

I|E /T\E E/"*\E

CMSC 330 Spring 2018 b d

39

Abstract Syntax Trees

» A parse tree and an AST are not the same thing
* The latter is a data structure produced by parsing

a“c E c*(b+d) E
/ I\ / *\

T ‘ Parse trees T /E\

a C C (E)

N ASTs * / \

RN / \ E + E

a C C 4+ ‘ ‘

7 '\ 5 g

Mult (Var (“a”) ,Var(“c”)) b d

Mult (Var (“c”) ,Plus (Var(“b”) ,Var(“d”)))
CMSC 330 Spring 2018 40

Practice

E—al|b|c|d|E+E|E-E | E*E | (E)

Make a parse tree for...
. ab

. a+(b-c)

. d*(d+b)-a

- (a+b)*(c-d)

. a+(b-c)*d

CMSC 330 Spring 2018

41

Leftmost and Rightmost Derivation

» Leftmost derivation
* Leftmost nonterminal is replaced in each step

» Rightmost derivation
* Rightmost nonterminal is replaced in each step

» Example

e Grammar
>S—-AB,A—a,B—b

e Leftmost derivation for “ab”
> S=>AB=>aB = ab

 Rightmost derivation for “ab”
> S=>AB=Ab=ab

CMSC 330 Spring 2018

42

Parse Tree For Derivations

» Parse tree may be same for both leftmost &
rightmost derivations

e Example Grammar: S — a | SbS String: aba
Leftmost Derivation

S = SbS = abS = aba /S|\
Rightmost Derivation S| b Sl
S = SbS = Sba = aba a a
* Parse trees don’ t show order productions are
applied

Every parse tree has a unique leftmost and a
unique rightmost derivation

CMSC 330 Spring 2018 43

Parse Tree For Derivations (cont.)

» Not every string has a unique parse tree

e Example Grammar: S — a | SbS String: ababa

Leftmost Derivation
S = SbS = abS = abSbhS = ababS = ababa

Another Leftmost Derivation
S = SbS = SbSbS = abSbS = ababS = ababa

N I\
. SN

a a a a

CMSC 330 Spring 2018 44

Ambiguity

» A grammar is ambiguous if a string may have
multiple leftmost derivations
* Equivalent to multiple parse trees
 Can be hard to determine
1. S—aS|T
T—bT|U No
U—-cU]|e
2. S—>T|T
T—-Tx|Tx|x]|x
3. S—SS|()](S) ?

CMSC 330 Spring 2018

45

Ambiguity (cont.)

» Example
* Grammar: S — SS | () | (S) String: ()()()
* 2 distinct (leftmost) derivations (and parse trees)
»S = SS = SSS =()SS =()()S =()()()
>S =SS = ()S =()SS =()()S =000

CMSC 330 Spring 2018

46

CFGs for Programming Languages

» Recall that our goal is to describe programming
languages with CFGs

» We had the following example which describes
limited arithmetic expressions

E_al|b|c|E+E|E-E|E*E|(E)

» What's wrong with using this grammar?
* |t's ambiguous!

CMSC 330 Spring 2018 47

Example: a-b-c

E = E-E=>a-EkE=>a-E-E> E=E-E=>=E-EE=>
a-b-E = a-b-c a-E-E = a-b-E = a-b-c
E E

/

E

N e
SN TN

b C a b

Corresponds to a-(b-c) Corresponds to (a-b)-c

CMSC 330 Spring 2018 48

AN

- E
E C

Another Example: If-Then-Else

Aka the dangling else problem

<stmt> — <assignment> | <if-stmt> | ...
<if-stmt> — if (<expr>) <stmt> |
If (<expr>) <stmt> else <stmt>
(Note < >’ s are used to denote nonterminals)

» Consider the following program fragment

if (x>y)

if (x <2z)
a="1;
else a = 2;

(Note: Ignore newlines)

CMSC 330 Spring 2018

50

Two Parse

Trees

if (x > y)
1f (x < z)
a=1;

else a = 2;

<if-stmt>

N

if <expr> <stmt>

|
|
|
|

if <expr>

X>y <if-stmt> !

if <expr> <st§nt> else <st[nt>

| |
|

]
!
]]
X<z a=

CMSC 330 Spring 2018

! i
|
|

1 a=2

<if-stmt>\\
<stmt> else <stmt>
|
:
|
<if-stmt> a=2
<expr> <stpwt>
| |
| |
| |
| |
X<z a=1
51

Quiz #5

Which of the following grammars is ambiguous”?

A. S—0SS1|051 | ¢

B. S—>A1S1A | ¢
A—0

C. S—(S5,S,9) |1

D. None of the above.

CMSC 330 Spring 2018

52

Quiz #5

Which of the following grammars is ambiguous”?

A. S—0SS1|051 | ¢

B. S—>A1S1A | ¢
A—0

C. S—(S5,S,9) |1

D. None of the above.

CMSC 330 Spring 2018

53

Dealing With Ambiguous Grammars

» Ambiguity is bad
* Syntax is correct
* But semantics differ depending on choice

» Different associativity (a-b)-c vs. a-(b-c)
» Different precedence (a-b)*c vs. a-(b*c)
» Different control flow if (if else) vs. if (if) else

» TWo approaches

* Rewrite grammar

»> Grammars are not unique — can have multiple grammars
for the same language. But result in different parses.

* Use special parsing rules

» Depending on parsing tool
CMSC 330 Spring 2018

Fixing the Expression Grammar

» Require right operand to not be bare expression

E-E+T|E-T|E*T|T
T—-al|b|c]|(E) E\
.

/

» Corresponds to left associativity T '
VAN

» Now only one parse tree for a-b-c
* Find derivation

T b

CMSC 330 Spring 2018 56

What it we want Right Associativity?

» Left-recursive productions
* Used for left-associative operators
* Example
E-E+T|E-T|E*T|T
T—-al|b|c]|(E)
» Right-recursive productions
* Used for right-associative operators
* Example
E-T+E|T-E|TE|T
T—-al|b|c]|(E)

CMSC 330 Spring 2018

S7

Parse Tree Shape

» The kind of recursion determines the shape of
the parse tree

left recursion right recursion

CMSC 330 Spring 2018

58

A Different Problem

» How about the string a+b*c ? i
EE+T|E-T|E*T|T E/J\T
T—alb|c|(E) /

E + T c

» Doesn’t have correct

precedence for * a

* When a nonterminal has productions for several
operators, they effectively have the same precedence

» Solution — Introduce new nonterminals

CMSC 330 Spring 2018 59

Final Expression Grammar

E-E+T|E-T|T owest precedence operators
T—->TP|P nigher precedence
P—al|b]|c|(E) nighest precedence (parentheses)

» Controlling precedence of operators
* Introduce new nonterminals
* Precedence increases closer to operands

» Controlling associativity of operators
* |Introduce new nonterminals

* Assign associativity based on production form
» E —» E+T (left associative) vs. E — T+E (right associative)
> But parsing method might limit form of rules

CMSC 330 Spring 2018 60

Conclusion

» Context Free Grammars (CFGs) can describe
programming language syntax
* They are a kind of formal language that is more
powerful than regular expressions

» CFGs can also be used as the basis for
programming language parsers (details later)

* But the grammar should not be ambiguous
» May need to change more natural grammar to make it so

* Parsing often aims to produce abstract syntax trees
» Data structure that records the key elements of program

CMSC 330 Spring 2018 61

