
CMSC 330: Organization of
Programming Languages

OCaml Imperative Programming

1
CMSC330 Spring 2018

2

So Far, Only Functional Programming

• We haven’t given you any way so far to change
something in memory
• All you can do is create new values from old

• This makes programming easier since it supports
mathematical (i.e., functional) reasoning
• Don’t care whether data is shared in memory

Ø Aliasing is irrelevant

• Calling a function f with argument x always produces
the same result
Ø For all x and y: f x = f y when x = y

Imperative OCaml

• Sometimes it is useful for values to change
• Call a function that returns an incremented counter
• Store aggregations in efficient hash tables

• OCaml variables are immutable, but

• OCaml has references, fields, and arrays that
are actually mutable
• I.e., they can change

3

4

References
• 'a ref: Pointer to a mutable value of type 'a
• There are three basic operations on references:

ref : 'a -> 'a ref
Ø Allocate a reference
! : 'a ref -> 'a
Ø Read the value stored in reference
:= : 'a ref -> 'a -> unit
Ø Change the value stored in reference

• Binding variable x to a reference is immutable
• The contents of the reference x points to may change

5

References Usage
Example:
let z = 3;;
val z : int = 3

let x = ref z;;
val x : int ref = {contents = 3}

let y = x;;
val y : int ref = {contents = 3}

z 3

y

x

contents =

3

6

References Usage
Example:
let z = 3;;
val z : int = 3

let x = ref z;;
val x : int ref = {contents = 3}

let y = x;;
val y : int ref = {contents = 3}

x := 4;;
- : unit = ()

z 3

y

x

contents =

3
contents =

4

7

References Usage
Example:
let z = 3;;
val z : int = 3

let x = ref z;;
val x : int ref = {contents = 3}

let y = x;;
val y : int ref = {contents = 3}

x := 4;;
- : unit = ()

!y;;
- : int = 4

z 3

y

x

contents =

3
contents =

4

Aliasing
• Reconsider our example

let z = 3;;
let x = ref z;;
let y = x;;
x := 4;;
!y;;

• Here, variables y and x are aliases:
• In let y = x, variable x evaluates to a location,

and y is bound to the same location
• So, changing the contents of that location will cause

both !x and !y to change

8

Quiz 1: What is the value w?

let x = ref 12 in
let y = ref 13 in
let z = y in
let _ = y := 4 in
let w = !y + !z in
w

9

A. 25
B. 8
C. 17
D. 16

Quiz 1: What is the value w?

let x = ref 12 in
let y = ref 13 in
let z = y in
let _ = y := 4 in
let w = !y + !z in
w

10

A. 25
B. 8
C. 17
D. 16

Quiz 1a: What is the value w?

let x = ref 12 in
let y = ref 13 in
let z = !y in
let _ = y := 4 in
let w = !y + z in
w

11

A. 25
B. 8
C. 17
D. 16

Quiz 1a: What is the value w?

let x = ref 12 in
let y = ref 13 in
let z = !y in
let _ = y := 4 in
let w = !y + z in
w

12

A. 25
B. 8
C. 17
D. 16

References: Syntax and Semantics

• Syntax: ref e
• Evaluation

• Evaluate e to a value v
• Allocate a new location loc in memory to hold v
• Store v in contents of memory at loc
• Return loc

• Note: locations are first-class values

• Type checking
• (ref e) : t ref

• if e : t

13

References: Syntax and Semantics

• Syntax: e1 := e2
• Evaluation

• Evaluate e2 to a value v2
• Evaluate e1 to a location loc
• Store v2 in contents of memory at loc
• Return ()

• Type checking
• (e1 := e2) : unit

• if e1 : t ref and e2 : t

14

References: Syntax and Semantics

• Syntax: !e
• This is not negation. Operator ! is like operator * in C

• Evaluation
• Evaluate e to a location loc
• Return contents v of memory at loc

• Type checking
• !e : t

• if e : t ref

15

Sequences: Syntax and Semantics

• Syntax: e1; e2
• e1; e2 is the same as let () = e1 in e2

• Evaluation
• Evaluate e1 to a value v1
• Evaluate e2 to a value v2
• Return v2

• We throw away v1 – so e1 is useful only if it has effects,
e.g., if it changes a reference’s contents or accesses a file

• Type checking
• e1;e2 : t

• if e1 : unit and e2 : t
16

17

;; versus ;

• ;; ends an expression in the top-level of OCaml
• Use it to say: �Give me the value of this expression�
• Not used in the body of a function
• Not needed after each function definition

Ø Though for now it won’t hurt if used there

• e1; e2 evaluates e1 and then e2, and returns e2
let print_both (s, t) = print_string s; print_string t;

"Printed s and t"

• notice no ; at end − it’s a separator, not a terminator
print_both (�Colorless green ", �ideas sleep")

Prints �Colorless green ideas sleep", and returns
"Printed s and t"

18

Grouping Sequences

• If you’re not sure about the scoping rules, use
begin...end, or parentheses, to group together
statements with semicolons

let x = ref 0
let f () =
begin
print_string "hello";
x := !x + 1

end

let x = ref 0
let f () =
(
print_string "hello";
x := !x + 1

)

20

Implement a Counter

let counter = ref 0 ;;
val counter : int ref = { contents=0 }

let next =
fun () ->
counter := !counter + 1; !counter ;;

val next : unit -> int = <fun>

next ();;
- : int = 1

next ();;
- : int = 2

21

Hide the Reference

let next =
let counter = ref 0 in
fun () ->
counter := !counter + 1; !counter ;;

val next : unit -> int = <fun>

next ();;
- : int = 1

next ();;
- : int = 2

let counter = ref 0 ;;
let next =

fun () ->
counter := !counter + 1; !counter ;;

22

Hide the Reference, Visualized

let next =
let ctr = ref 0 in

fun () ->
ctr := !ctr + 1; !ctr

à
let next =
let ctr = loc in

fun () ->
ctr := !ctr + 1; !ctr

à
let next =

contents =

0

fun () ->
ctr := !ctr + 1; !ctr ctr = loc

23

let next =
fun () ->
let counter = ref 0 in
counter := !counter + 1;
!counter

A. Nothing is wrong
B. It returns a boolean, not an integer
C. It returns a reference to an integer instead of an integer
D. It returns the same integer every time

Quiz 2: What is wrong with the counter?

24

Quiz 2: What is wrong with the counter?

let next =
fun () ->
let counter = ref 0 in
counter := !counter + 1;
!counter

A. Nothing is wrong
B. It returns a boolean, not an integer
C. It returns a reference to an integer instead of an integer
D. It returns the same integer every time

25

The Trade-Off Of Side Effects

• Side effects are absolutely necessary

• That’s usually why we run software! We want

something to happen that we can observe

• They also make reasoning harder

• Order of evaluation now matters

• No referential transparency

Ø Calling the same function with the same arguments may

produce different results

• Aliasing may result in hard-to-understand bugs

Ø If we call a function with refs r1 and r2, it might do strange

things if r1 and r2 are aliased

Order of Evaluation
• Consider this example

let y = ref 1;;
let f _ z = z+1;; (* ignores first arg *)

let w = f (y:=2) !y;;
w;;
• The first argument to the call to f is the result of the assignment

expression y:=2, which is unit ()
• The second argument is the current contents of reference y

• What is w if f’s arguments are evaluated left to right?
• 3

• What if they are evaluated right to left?
• 2

26

27

OCaml Order of Evaluation

• In OCaml, the order of evaluation is unspecified
• This means that the language doesn’t take a stand,

and different implementations may do different things

• On my Mac, OCaml evaluates right to left
• True for the bytecode interpreter and x86 native code

• Run the previous example and see for yourself!

• Strive to make your programs produce the same
answer regardless of evaluation order

Quiz 3: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + !y in
w

28

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 3: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + !y in
w

29

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 4: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + (f y) in
w

30

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 4: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + (f y) in
w

31

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 5: Which f is not referentially transparent?

I.e., not the case that f x = f y for all x = y

32

A. let f z =
let y = ref z in
y := !y + z;
!y

B. let f =
let y = ref 0 in
fun z ->
y := !y + z; !y

C. let f z =
let y = z in
y+z

D. let f z = z+1

Quiz 5: Which f is not referentially transparent?

I.e., not the case that f x = f y for all x = y

33

A. let f z =
let y = ref z in
y := !y + z;
!y

B. let f =
let y = ref 0 in
fun z ->
y := !y + z; !y

C. let f z =
let y = z in
y+z

D. let f z = z+1

This is basically the counter function

Structural vs. Physical Equality

• The = operator compares objects structurally
• [1;2;3] = [1;2;3] (* true *)
• (1,2) = (1,2) (* true *)
• The = operator is used for pattern matching
• The <> operator is the negation of structural equality

• The == operator compares objects physically
• [1;2;3] == [1;2;3] (* false *)
• The != operator is the negation of physical equality

• Mostly you want to use structural equality
• But it’s a problem with cyclic data structures

34

Cyclic Data Structures Possible With Ref

let x = newcell 1 Nil;;
val x : int reflist = Cons (1, {contents = Nil})

35

type 'a rlist =
Nil | Cons of 'a * ('a rlist ref);;

let newcell x y = Cons(x,ref y);;

let updnext (Cons (_,r)) y = r := y;;

x Cons (1,)

contents =

Nil

contents =

Nil

Cyclic Data Structures Possible With Ref

let x = newcell 1 Nil;;
val x : int reflist = Cons (1, {contents = Nil})

updnext x x;;
- : unit = ()

x == x;;
- : bool = true

x = x;; (* hangs *)

36

type 'a rlist =
Nil | Cons of 'a * ('a rlist ref);;

let newcell x y = Cons(x,ref y);;

let updnext (Cons (_,r)) y = r := y;;

x Cons (1,)

contents =

Equality of refs themselves

• Refs are compared structurally by their
contents, physically by their addresses
• ref 1 = ref 1 (* true *)
• ref 1 <> ref 2 (* true *)
• ref 1 != ref 1 (* true *)
• let x = ref 1 in x == x (* true *)

37

Mutable fields
• Fields of a record type can be declared as mutable:

38

type point = {x:int; y:int; mutable c:string};;
type point = { x : int; y : int; mutable c : string; }

let p = {x=0; y=0; c="red"};;
val p : point = {x = 0; y = 0; c = "red"}

p.c <- “white”;;
- : unit = ()

p;;
val p : point = {x = 0; y = 0; c = ”white"}

p.x <- 3;;
Error: The record field x is not mutable

Implementing Refs
• Ref cells are essentially syntactic sugar:

type 'a ref = { mutable contents: 'a }
let ref x = { contents = x }
let (!) r = r.contents
let (:=) r newval = r.contents <- newval

• ref type is declared in Pervasives
• ref functions are compiled to equivalents of above

39

Arrays
• Arrays generalize ref cells from a single mutable value

to a sequence of mutable values

let v = [|0.; 1.|];;
val v : float array = [|0.; 1.|]

v.(0) <- 5.;;
- : unit = ()

v;;
- : float array = [|5.; 1.|]

40

Arrays
• Syntax: [|e1; ...; en|]
• Evaluation

• Evaluates to an n-element array, whose elements are
initialized to v1 … vn, where e1 evaluates to v1, ...,
en evaluates to vn
Ø Evaluates them right to left

• Type checking
• [|e1; …; en|] : t array

Ø If for all i, each ei : t

41

Arrays
• Syntax: e1.(e2)
• Evaluation

• Evaluate e2 to integer value v2
• Evaluate e1 to array value v1
• If 0 ≤ v2 < n, where n is the length of array v1, then

return element at offset v2 of v1
• Else raise Invalid_argument exception

• Type checking: e1.(e2) : t
• if e1 : t array and e2 : int

42

Arrays

• Syntax: e1.(e2) <- e3
• Evaluation

• Evaluate e3 to v3
• Evaluate e2 to integer value v2
• Evaluate e1 to array value v1
• If 0 ≤ v2 < n, where n is the length of array v1, then

update element at offset v2 of v1 to v3
Ø Else raise Invalid_argument exception

• Return ()
• Type checking: e1.(e2) <- e3 : unit

• if e1 : t array and e2 : int and e3 : t
43

Quiz 6: What is the value w?

let x = [| 0; 1 |] in
let w = x in
x.(0) <- 1;
w

44

A. 1
B. [| 0; 1 |]
C. Type Error
D. [| 1; 1 |]

Quiz 6: What is the value w?

let x = [| 0; 1 |] in
let w = x in
x.(0) <- 1;
w

45

A. 1
B. [| 0; 1 |]
C. Type Error
D. [| 1; 1 |]

Control structures

• Traditional loop structures are useful with
imperative features:

while e1 do e2 done
for x=e1 to e2 do e3 done
for x=e1 downto e2 do e3 done

46

49

Comparison To OCaml

• In OCaml, an updatable location and the
contents of the location have different types
• The location has a ref type

int x;
int y;

x = 3;

y = x;

3 = x;

let x = ref 0;;
let y = ref 0;;

x := 3;; (* x : int ref *)

y := (!x);;

3 := x;; (* 3 : int; error *)

C OCaml

50

OCaml Language Choices

• Implicit or explicit declarations?

• Explicit – variables must be introduced with let before use

• But you don’t need to specify types

• Static or dynamic types?

• Static – but you don’t need to write down types

• OCaml uses type inference to figure out types for you

• Good: less work to write programs

• Bad: easier to make mistakes, harder to find errors

OCaml Programming Tips

• Compile your program often, after small changes
• The OCaml parser often produces inscrutable error

messages
• It’s easier to figure out what’s wrong if you’ve only

changed a few things since the last compile

• If you’re getting strange type error messages, add
in type declarations
• Try writing down types of arguments
• For any expression e, can write (e:t) to assert e has type t

51

OCaml Programming Tips (cont.)

• Watch out for precedence and function application

52

let mult x y = x*y

mult 2 2+3 (* returns 7 *)
(* parsed as (mult 2 2)+3 *)

mult 2 (2+3) (* returns 10 *)

OCaml Programming Tips (cont.)

• All branches of a pattern match must return the
same type

53

match x with
... -> -1 (* branch returns int *)
| ... -> () (* uh-oh, branch returns unit *)
| ... -> print_string �foo�

(* also returns unit *)

OCaml Programming Tips (cont.)

• You cannot assign to ordinary variables!

54

let x = 42;;
val x : int = 42
x = x + 1;; (* this is a comparison *)
-: bool = false
x := 3;;
Error: This expression has type int but is here
used with type 'a ref

OCaml Programming Tips (cont.)

• Again: You cannot assign to ordinary variables!

55

let x = 42;;
val x : int = 42
let f y = y + x;; (* captures x = 42*)
val f : int -> int = <fun>
let x = 0;; (* shadows binding of x *)
val x : int = 0
f 10;; (* but f still refers to x=42 *)
- : int = 52

