
(Re)Introduction to 

Graphs and Some 

Algorithms



Graph Terminology (I)

• A graph is defined by a set of vertices V

and a set of edges E.

• The edge set must work over the defined 

vertices in the vertex set.

• Many different types of relationships can 

be represented as graphs.

• Graphs (specifically edges) can be either 

directed (eg: driving on a street) or 

undirected (eg: walking on a street).

• If two vertices are connected by an edge, 

we say those vertices are adjacent to each 

other.

• Edges can have values associated with 

them, in which case we call the graph a 

weighted graph.



Graph Terminology (II)

• A path is a list of edges that are 

sequentially connected.  The length

of a path is the number of edges.  

We will say that vertex b is 

reachable from a if there is a path 

from a to b.

• A cycle is a path where the starting 

vertex is also the ending vertex.

• A Hamiltonian Path is a path that 

visits every vertex in a graph 

exactly once.

• An Eulerian Path is a path that visits 

every edge in a graph exactly once.



Graph Representation 

(Directed)



Graph Representation 

(Undirected)



A Proof on Graphs

Definitions: In a directed graph, the 
in-degree of a vertex is the number 
of edges going into it and the out-
degree of a vertex is the number of 
edges coming out of it.

Theorem: 

Σ in-degree(v) = Σ out-degree(v)

Proof will be by induction.  Start with 
a base case of a graph with a single 
edge.  For the inductive hypothesis, 
say that for any graph with an edge 
set of size k that the theorem holds.  
Then show that it holds for any 
graph with an edge set of size k+1.



Inductive Hypothesis

For any graph with edge set of size k (k≥1) 

Σ in-degree(v) = Σ out-degree(v)

Inductive Step

Show that for any graph G with edge set of size 

k+1 that  Σ in-degree(v) = Σ out-degree(v)

Let H be a generic particular graph with k+1 

edges.

Select an edge (call it e1) and remove it from the 

edge set to create a new graph H’.

By our definitions, 

Σ in-degree(v) = Σ in-degree(v) + 1

Σ out-degree(v) = Σ out-degree(v) + 1

Can now ask:

Σ in-degree(v) + 1 = Σ out-degree(v) + 1





How can we solve Eulerian path?

If all we want is a yes/no answer, it’s 

fairly easy.

If we also want to find the actual path 

if it exists, that becomes a much more 

involved question…  

For one point, we need to think about 

algorithms that are able to traverse 

graphs.  So, let’s look at one…



Breadth-First Search

Given a graph, one way to have an 
algorithm try to visit every vertex in 
that graph is via a breadth-first search.

– Select a starting point.

– Visit all vertices that are “one jump” 
away from it.

– Visit all vertices that are “two jumps” 
away from it.

– etc.

What if the graph is directed?

If the graph is not connected, what 
ends up happening?  

A simple problem that can be solved 
using this general technique is that of 
finding the shortest path between two 
vertices in an undirected and 
unweighted graph.



Shortest Path via BFS
Starting at vertex s∈V generate an array of 

distances from s called dist[] such that ∀v∈V, 

dist[v]=length of shortest path from s to v.

dist[s]=0

We will also create a predecessor array of the 

last vertex we were at before getting to the 

end of the path from s to v 

∀v∈V, pred[v]=“one step back”

pred[s]=none

With just these two arrays, we will be able to 

reconstruct any shortest part request from s to 

some vertex.

This is because any sub-path of the optimal path 

must also be an optimal path between its own 

endpoints.  

If it weren’t, then we could have replaced it and 

gotten a shorter overall path.



Basic Pseudocode

Start at s.

For each neighbor v of s

dist[v]=1

pred[v]=s.

Move outwards from each neighbor 

you’ve seen and set the next “ripple” 

out as “+1” of the current distance, 

and set pred[] appropriately.

Need a way to make sure we don’t end 

up in cycles!



Avoiding Cycles

We will assign a color to each vertex based 

on the following rules:

- white = not seen yet at all

- gray = seen but not processed yet

- black = processed

We will create a queue of gray vertices, and 

will never add any vertex to the queue 

more than once.

When we are done processing a vertex (ie: 

we have touched all its neighbors) we go 

back to the queue to get the next vertex to 

process.



More Detailed Pseudocode
BFS (Graph G, vertex s) {

int size = G.getVertexCount;

int dist = new int[size];

vertex pred = new int[size];

Queue Q= new Queue<vertex>;

Colors state = new Colors[size];

for each v in G.V {

state[v]=white; dist[v]=infinity; pred[v]=none;

}

state[s]=gray;  dist[s]=0;  pred[s]=none;

Q.add(s);

while (!Q.empty()){

u=Q.remove();

for each unvisited v in G.Adj(u) {

state[v]=gray;

dist[v]=dist[u]+1;

pred[v]=u;

Q.add(v);

}

state[u]=black;

}

}



What’s the runtime?

Each vertex gets enqueued at most one time, 

so each is processed at most one time.

– Write this up using a summation to represent 

the processing of all of the vertices…

Our runtime will be order:

|V| for all of the initializations

The while loop’s cost can be seen as the 

sum across all vertices u in V of:
- the degree(u) for work inside the for loop

- “+1” for the work outside of the for loop 

We can split the summation into two 

simpler ones and if you work it through, 

the runtime is O(|V|+|E|).



What else does BFS give us?

It allows us to organize the entire 

graph as “ripples” away from a central 

point.

– This could be useful if we could 

restate other questions within this 

framework.

Our predecessor array could be used 

to create a tree rooted at source s of 

vertices that can be reached from s.  

– This is often called a breadth-first tree.  

– If we could phrase a problem as a 

traversal of this tree…



Depth-First Search

You could basically just change the 

Queue in the BFS code into a Stack.

You could also just write it out as a 

recursive algorithm.

This approach can also be used to 

determine what vertices are reachable 

in O(|E|+|V|) time.



DFS on a Directed Graph 

with “Timing” Info

We can add more arrays and store 

information such as when (in terms of 

a continuously advancing ticker) each 

vertex is first visited (enter) and 

finally processed (exit).

Even in a connected graph, we might 

end up having to build a forest of trees 

to give every vertex a set of times.

– After doing a DFS from a given 

starting point, if there are vertices with 

no times, choose one of them, and 

continue.



Example Graph



Topological Sort of a Digraph

NOTE: This only works if there are no 

cycles, since if there are cycles there 

isn’t the notion of a sorted order.

Imagine a graph as beads where the 

edges are strings of equal length 

connecting ordered pairs of beads.

You want to arrange the beads so that 

all edges point left-to-right.

How can you use a DFS with “timing” 

info to accomplish this?

– Perform the DFS with timing and then 

“sort” by listing the nodes in reverse 

order based on the exit times.



Strongly Connected 

Components

We define “strongly connected” to 

mean that for every pair of vertices 

(u,v) in the component, there is a 

path from u to v and from v to u.

In the following graph, what are the 

strongly connected components?



Finding the SCCs

Step 1: Perform a DFS with “timing” 
on the graph G.

Step 2: Perform a DFS with “timing” 
on the graph GT with the added 
restriction that when you have a 
choice of vertices, you choose the one 
with the largest finish time from Step 
1’s search.

Every time your algorithm hits a dead-
end, you have finished one strongly 
connected component and are ready to 
start finding the next one.

Let’s trace this on the graph from the 
previous slide…



Could you use a BFS or DFS to…

Detect whether a given graph has any 

cycles?

– Yes.

Determine whether every vertex is 

reachable from a particular vertex in a 

given graph?

– Yes.

Find the longest simple path through a 

graph between two vertices in an 

unweighted graph that might contain 

cycles?

– No!


