
1

The growth of functions.

Runtime Growth Rates (I)

The runtimes of some (most?)
algorithms are “clean” curves,
though some do oscillate:

It can be useful when describing
algorithms (or even problems)
to discuss how their runtimes
can be bound.

2

Runtime Growth Rates (II)

It is also possible that an

algorithm has a runtime of T(n)

only for “sufficiently large

value s of n”:

In this case, it can be useful to

find that “crossover” value.

Asymptotic Analysis

There are FIVE different asymptotic

measures of an algorithm.

– Big-O Ο()

– Theta Θ()

– Omega Ω()

– little-o ο()

– little-omega ω()

These can all be used to discuss the

relationship between how any two

functions grow. We use them in a

specific way when talking about (for

example) the runtime of algorithms.

3

Big-O (or Big-Omicron)

T(n)∈O(f(n)) if and only if

∃n0∈Z+,c∈R+ such that

∀n∈Z≥n
0, T(n)≤c·f(n)

We use this to state f(n) as an upper

bound on T(n).

The fact that 0.5n2∈Ο(n2) might be

obvious, but what about the fact that

17n2∈Ο(n2)? While it is true that

42n∈Ο(n2) would we ever use this

fact in this way?

Let’s look at some more involved

examples…

4

Big-O and Recurrences

The recurrence for MergeSort was:

T(0)=T(1)=1

T(n)=2T(n/2) +n

Let’s show that T(n)∈O(nlogn)

5

Ω (Omega or Big-Omega)

T(n)∈ Ω(f(n)) if and only if

∃n0∈Z+,c∈R+ such that

∀n∈Z≥n
0, c·f(n)≤T(n)

We use this to state f(n) as a lower

bound on T(n).

Now, the fact that 17n2∈Ω(n2) should

be obvious, but we can also say that

0.5n2∈Ω(n2)? We can also say

things like 42n2∈Ω(n).

Let’s look at some more involved

examples…

6

Θ (Theta)

If a function is both Ω and Ο of the

same function class, then we say it

is theta of that class.

For example, if we look at BubbleSort

in more detail, we can show that it is

in Ω(n2) and Ο(n2) so we would call

it Θ(n2).

Formally, we have…

T(n)∈ Θ(f(n)) if and only iff

∃n0∈Z+,c1,c2∈R+ such that

∀n∈Z≥n
0, c1·f(n)≤T(n) ≤c2·f(n)

7

Consider the following…

T(n) = (n2-n)/2

Find n0, c such that

∀n∈Z≥n
0, c·n2≤T(n)

to prove that this runtime is in Ω(n2).

“Exam #1”

After revisiting sorting a little, we will

continue on with the remaining

asymptotic definitions in this deck

as well as limits but there will not be

questions about things past this slide

within this set on the first exam.

Note: We will still be covering some

new things before the first exam, it’s

just the later things beyond this

within this particular slide set that

will not appear on the first exam.

8

Little-ο

T(n)∈ο(f(n)) if and only if

∀c∈R+, ∃n0∈Z+, such that

∀n∈Z≥n
0, T(n)<c·f(n)

Note that in this definition we are

saying that the runtime grows

slower than the given function f(n).

17n∈ο(n2)

3n2∉ο(n2)

0.5n2∉ο(n2)

Little-o Proof

Show that 3n∈o(n2)

Need ∀c∈R+, ∃n0∈Z+, such that

∀n∈Z≥n
0, 3n<c·n2

Choose a generic particular c>0.

Show ∃n0≥1 st ∀n∈Z≥n
0, 3n<c·n2

Let’s build that n0!

want 3n<cn2 true

want 3<cn true

want 3/c<n true

OK, let n0=3/c+1

Let’s make sure this really does work

by plugging it in and proving the ∀...

9

Little-omega

T(n)∈ω(f(n)) if and only if

∀c∈R+, ∃n0∈Z+, such that

∀n∈Z≥n
0, c·f(n)<T(n)

Note that in this definition we are

saying that the runtime grows faster

than the given function f(n).

0.5n2∈ω(n)

3n2∉ω(n2)

0.5n2∉ω(n2)

Other uses…

In a recurrence, we could make use of
this by writing something such as:

T(n) = 2T(n/2)+Θ(n)

In fact, we briefly saw this type of use
when we discussed the runtime of
MergeSort.

In this case we are saying that there is
another cost to add, and that cost is
dominated by a function of n.

We might use this if there are several
different linear algorithms that we
might choose to call, but we don’t
want to decide which yet.

10

Problems -vs- Algorithms

We have been discussing how to

classify the runtime of algorithms.

It is also be possible to classify an

entire problem.

For example, we would prove that a

certain problem is in little-omega of n

if we could prove that no linear-time

algorithm could ever be able to solve

it correctly on all inputs.

This is very different from just proving

that a specific linear-time algorithm does

not work.

Some properties…

All of this relationships are transitive

relationships.

Big-Omicron, Big-Omega, and Theta

relationships are all reflexive.

Theta is the only relationship that is

symmetrical!

11

Limits

12

L'Hôpital's rule would probably come

in handy here…

Use limits to determine which
runtime grows at a faster rate.

n -or- nlogn

logn -or- squareroot(n)

n500 -or- 2n

13

Limits Recap

