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The growth of functions.

Runtime Growth Rates (I)

The runtimes of some (most?) 
algorithms are “clean” curves, 
though some do oscillate:

It can be useful when describing 
algorithms (or even problems) 
to discuss how their runtimes 
can be bound.
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Runtime Growth Rates (II)

It is also possible that an 

algorithm has a runtime of T(n) 

only for “sufficiently large 

value s of n”:

In this case, it can be useful to 

find that “crossover” value.

Asymptotic Analysis

There are FIVE different asymptotic 

measures of an algorithm.

– Big-O Ο( )

– Theta Θ( )

– Omega Ω( )

– little-o ο( )

– little-omega ω( )

These can all be used to discuss the 

relationship between how any two 

functions grow.  We use them in a 

specific way when talking about (for 

example) the runtime of algorithms.
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Big-O (or Big-Omicron)

T(n)∈O(f(n)) if and only if 

∃n0∈Z+,c∈R+ such that

∀n∈Z≥n
0, T(n)≤c·f(n)

We use this to state f(n) as an upper 

bound on T(n).

The fact that 0.5n2∈Ο(n2) might be 

obvious, but what about the fact that 

17n2∈Ο(n2)?  While it is true that 

42n∈Ο(n2) would we ever use this 

fact in this way?

Let’s look at some more involved 

examples…
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Big-O and Recurrences

The recurrence for MergeSort was:

T(0)=T(1)=1

T(n)=2T(n/2) +n

Let’s show that T(n)∈O(nlogn)
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Ω (Omega or Big-Omega)

T(n)∈ Ω(f(n)) if and only if

∃n0∈Z+,c∈R+ such that

∀n∈Z≥n
0, c·f(n)≤T(n)

We use this to state f(n) as a lower 

bound on T(n).

Now, the fact that 17n2∈Ω(n2) should 

be obvious, but we can also say that 

0.5n2∈Ω(n2)?  We can also say 

things like 42n2∈Ω(n).

Let’s look at some more involved 

examples…
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Θ (Theta)

If a function is both Ω and Ο of the 

same function class, then we say it 

is theta of that class.

For example, if we look at BubbleSort 

in more detail, we can show that it is 

in Ω(n2) and Ο(n2) so we would call 

it Θ(n2).

Formally, we have…

T(n)∈ Θ(f(n)) if and only iff

∃n0∈Z+,c1,c2∈R+ such that

∀n∈Z≥n
0, c1·f(n)≤T(n) ≤c2·f(n)
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Consider the following…

T(n) = (n2-n)/2

Find n0, c such that 

∀n∈Z≥n
0, c·n2≤T(n)

to prove that this runtime is in Ω(n2).

“Exam #1”

After revisiting sorting a little, we will 

continue on with the remaining 

asymptotic definitions in this deck 

as well as limits but there will not be 

questions about things past this slide 

within this set on the first exam.

Note: We will still be covering some 

new things before the first exam, it’s 

just the later things beyond this 

within this particular slide set that 

will not appear on the first exam.



8

Little-ο

T(n)∈ο(f(n)) if and only if

∀c∈R+, ∃n0∈Z+, such that

∀n∈Z≥n
0, T(n)<c·f(n)

Note that in this definition we are 

saying that the runtime grows 

slower than the given function f(n).

17n∈ο(n2)

3n2∉ο(n2)

0.5n2∉ο(n2)

Little-o Proof

Show that 3n∈o(n2) 

Need ∀c∈R+, ∃n0∈Z+, such that

∀n∈Z≥n
0, 3n<c·n2

Choose a generic particular c>0.

Show ∃n0≥1 st ∀n∈Z≥n
0, 3n<c·n2

Let’s build that n0!

want 3n<cn2 true

want 3<cn true

want 3/c<n true

OK, let n0=3/c+1

Let’s make sure this really does work 

by plugging it in and proving the ∀...
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Little-omega

T(n)∈ω(f(n)) if and only if

∀c∈R+, ∃n0∈Z+, such that

∀n∈Z≥n
0, c·f(n)<T(n)

Note that in this definition we are 

saying that the runtime grows faster

than the given function f(n).

0.5n2∈ω(n)

3n2∉ω(n2)

0.5n2∉ω(n2)

Other uses…

In a recurrence, we could make use of 
this by writing something such as:

T(n) = 2T(n/2)+Θ(n)

In fact, we briefly saw this type of use 
when we discussed the runtime of 
MergeSort.

In this case we are saying that there is 
another cost to add, and that cost is 
dominated by a function of n.

We might use this if there are several 
different linear algorithms that we 
might choose to call, but we don’t 
want to decide which yet.
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Problems -vs- Algorithms

We have been discussing how to 

classify the runtime of algorithms.  

It is also be possible to classify an 

entire problem.  

For example, we would prove that a 

certain problem is in little-omega of n

if we could prove that no linear-time 

algorithm could ever be able to solve 

it correctly on all inputs.

This is very different from just proving 

that a specific linear-time algorithm does 

not work.

Some properties…

All of this relationships are transitive 

relationships.

Big-Omicron, Big-Omega, and Theta 

relationships are all reflexive.

Theta is the only relationship that is 

symmetrical!
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Limits
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L'Hôpital's rule would probably come 

in handy here…

Use limits to determine which 
runtime grows at a faster rate.

n -or- nlogn

logn -or- squareroot(n)

n500 -or- 2n
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Limits Recap


