
Sorting “Recap”

What is a natural way to sort?

Sorting:

- stacks of exams?

• want it easier to enter in a grade book
and return in class?

- a hand of playing cards?

• want to be able to plan your strategy?

- a deck of playing cards?

• make sure no cards are missing?

- a case of collector cards?

• so you can make full sets?

- others?

Would any/all of these work as
computer algorithms?

What if our data is held in arrays?

What is the input?

What do we need as input to a sorting

algorithm?

– A list of values is the obvious thing we

need. For our initial discussions, this

will be an array-based list.

– Is there anything else?

Some Sorting Algorithms

Some examples you’ve probably

already seen:

– BubbleSort

– SelectionSort

– InsertionSort

With what similar philosophy do all

these algorithms approach the

problem of sorting?

InsertionSort

Input: list of values

Output: ordered list of values

Algorithm:

• Start with a one-element sorted list.

• Take “next” value and insert it in

the correct place of the already-

sorted list.

• Repeat above until all values have

been inserted.

InsertionSort Pseudocode

InsertionSort(L) {

/* start with L[1] as a one-element list that
is already sorted */

for pos = 2 to L.length {

val = L[pos];

/* insert val in the correct place in the
already ordered sublist, sliding elements
over as you search */

iter = pos-1;

while (iter<>0) and (L[iter]>val) {

L[iter+1]=L[iter];

iter--;

}

L[iter+1]=val;

} //endfor

}

Analysis of InsertionSort

It is not recursive, so you can use

summations to represent the for and

while loops…

More sorting algorithms…

Some other examples you’ve probably

already seen:

– MergeSort

– QuickSort

With what similar philosophy do both

of these algorithms approach the

problem of sorting?

MergeSort

An example of a Divide & Conquer

algorithm.

– Split the list in half

– Sort each half

– Merge them back together

Common MergeSort

Pseudocode

MergeSort (L, start, size) {

if (size>1) {

middle = Floor(size/2);

MergeSort(L,start,middle);

MergeSort(L,start+middle,size-middle);

Merge(L,start,middle,

start+middle,size-middle);

}

}

This algorithm re-uses the array holding the

original list as it works.

Merge(L1,L2)

Since this sorting algorithm requires

us to merge two array-based lists

(stored in the same actual array in

memory) we should discuss that as

well.

“Thought Question” – Is it possible to

perform an efficient merge of two

logical sub-lists without using a large

amount of temporary space of some

sort in the array-based MergeSort?

Merge (Lst, left, left_size, right, right_size) {
new Array[left_size] L;
new Array[right_size] R;
for i = 1 to left_size L[i]=Lst[left+i];
for i = 1 to right_size R[i]=Lst[right+i];

posL=1;
posR=1;
posLst=left;
while (posL<=left_size)&&(posR<=right_size)

if L[posL]<R[posR]
Lst[posLst++]=L[posL++];

else
Lst[posLst++]=R[posR++];

if (posR<=right_size)

for i=posR to right_size Lst[postLst++]=R[i];

else

for i=posL to left_size Lst[postLst++]=L[i];

}

What is the run-time of Merge in terms of

data comparisons?

Analysis of MergeSort

if (size>1) {

middle = Floor(size/2);

MergeSort(L,start,middle);

MergeSort(L,start+middle,size-middle);

Merge(L,start,middle,

start+middle,size-middle);

}

Looking at comparisons:

T(1) = ???

T(n) = ???

NOTE: This is recursive, so our time on

input of size n will be a recurrence

relation!

InsertionSort -vs- MergeSort

Looking at comparison-counting only:

Who has the better best case?

Worse case?

Average case?

Are there other factors to consider?

Do these other factors matter

asymptotically when comparing two

algorithms?

Even more algorithms..

There are many more sorting

algorithms out there…

– RadixSort

– BucketSort

– SpaghettiSort

– LUPsort

There are also algorithms designed

specifically for multi-processor

systems.

Does MergeSort lend itself to some

parallelism easily? What issues might

arise?

