
1

Tree-based Data
Structures and Algorithms

BinaryTree::FindSmall()

How would you search for the

smallest element in a generic

binary tree?

2

BinarySearchTree::FindSmall()

How would you search for the

smallest element in a binary

search tree?

BST::FindNextLargest()

How would you find the next

largest element in a BST based

on the element at which you were

currently positioned?

3

BST::Add(val) and Del(val)

How would you add something to a

BST?

How would you delete something

from a BST?

Question

Will the following algorithm work to

determine whether a binary tree is a

binary search tree if you pass in its

root?

boolean testBST(Node root) {

boolean answer = true;

if (root.left != null) {

answer = answer &&

root.val >= root.left.val &&

testBST(root.left);

}

if (root.right != null) {

answer = answer &&

root.val <= root.right.val &&

testBST(root.right);

}

return answer;

}

4

How to write testBST?

This is left in part as a thought exercise for

those who might find this question

interesting.

It might be tempting to say that for each

node you should check to see if the largest

value in left subtree is smaller than the

value in the node and then check to see if

the minimum value in right subtree greater

than it, but does that have a good runtime

cost.

If you work out (or find) a solution that is

correct, you should then analyze the runtime

in terms of data comparisons. It should be

n time really… It should also not use too

much extra space… We’ve actually talked

about something similar that will work…

Balanced Trees

In terms of height, the best binary tree

is a complete binary tree.

Problem: It will be costly to maintain

this property as new data is added to

a complete binary search tree.

Typical Solution: Allow for a certain

(very small) degree of imbalance.

5

AVL Trees

The AVL Tree (named for Adelson-

Velskii and Landis) is an example of

a “height-balanced” binary search

tree.

– Any two subtrees of a node have

heights that differ by at most one.

Is this constraint enough to guarantee

that the height of the tree will be

O(logn)?

AVL Tree Run-times

Search

– This is O(logn) since we have proven
that the height of the tree is O(logn).

Insert

– This is also O(logn) but requires a bit
of thought.

– Always insert at the leaf level and then
rebalance. There are only a few cases
that need to be handled.

Delete

– This can also be done in O(logn) time
and also requires a bit of thought.

– Always delete at the leaf level. If the
value to be deleted isn’t at the leaf,
find a value at the leaf level that can
take the place of the one that you want
to delete.

6

Other BSTs…

Red-Black Trees (balanced)

– The height is at most 2log(n+1).

– Insertion and deletion is O(logn).

Splay Trees (not balanced)

– The height can get as bad as O(n) in

the worst case (but searching the tree

actually helps rebalance the tree).

– Insertion, Deletion, and Searching

have amortized runtimes of O(logn).

– In this data structure, the search target

is moved to the root - this means that if

you search for the same subset of

things repeatedly, you get even better

performance.

