
Lower Bounds in a

Decision-Based Model

Decision Trees and

Adversarial Arguments

Lower Bounds

Recall that a problem can have upper
and lower bounds.

The upper bound of a problem is
basically the worst case runtime of
the best algorithm that we have
available so far.

The lower bound is the amount of
work that any (including the
optimal) solution would still have
to do in the worst case.

NOTE: The lower bound is not
defined by the runtime of the best
algorithm that we can think of, or
that can be created using the
techniques of which we know.

Some math of potential interest…

Claim:

Proof:

∀c>0, ∃n0∈Z+,

∀n∈Z≥n0, (n/2)n<c·nn

() ()n
n

nn ο∈
2

Sorting

We’ve seen how QuickSort has a
worst-case of n2 yet its expected
runtime is nlogn.

In practice, for really small lists,
InsertionSort works pretty well.

However, when talking about an
upper-bound for the general
problem of “comparison-based
sorting” an algorithm such as
MergeSort is what we would
point to since its worst case is
nlogn.

What about the lower bound for the
problem?

Lower Bound for Sorting

Let’s think about a decision tree

that represents data comparisons.

The leaves of the tree would end up

representing the different ways

the program could end, thus being

the different possible re-orderings

of the input values a1..an.

How many different re-orderings of

the input values a1..an exist?

How many levels are required in

our decision tree?

log(n!)∈Θ(nlogn)

Now that we know the height of the

optimal decision tree would be at

least log(n!) we need to prove it is in

Θ(nlogn).

Big-O:

∃c,n0>0,∀n∈Z≥n0, log(n!)≤cnlogn

Big-Ω:

∃c,n0>0,∀n∈Z≥n0, cnlogn≤log(n!)

Merging Two Lists

Earlier, we looked at the problem

where we have two ordered lists of

equal sizes that we want to merge

into a single ordered list.

We looked at an algorithm to do this

as part of looking at MergeSort. If

the length of each list was m, then in

the worst case the algorithm for

merging two lists runs in 2m-1 time.

This sets an upper bound to the

problem for us.

What is the lower bound for the

problem in the worst-case?

Searching a List

When searching an unordered list

for a specific value, what is the

lower bound?

Note that there multiple ways to

generate potential lower bounds,

just like there are many ways to

write algorithms for the upper

bound.

We look for higher and higher

lower bounds and lower and lower

upper bounds, until (ideally) they

match.

Searching an Ordered List

When searching an ordered list

for a specific value, what is the

lower bound?

Finding the 2nd Smallest

We can find the 2nd smallest element

of an unordered list of n values in (n-

1)+(n-2) or 2n-3 time “trivially”.

Can we do better? We know in the

comparison-based model that by

using information we gain along the

way we can find the minimum and

maximum at the same time using

only 3n/2-2 comparisons.

What if I said we can find the 2nd

smallest element using only (n-

1)+(┌log2(n)┐-1) comparisons.

What about other decisions?

A “comparison” can be thought of as the
decision “Given these two values, how
would you order them?”

The decision tree approach that we used
to determine a lower bound for searching
an ordered list and sorting an unordered
list can be used with decisions other than

comparisons.

For example, what if what we counted as a
single “decision” was:

– Given 8 elements from the list and a search
key, does that key match any of the 8
elements?

– Given 20 elements from the list, what is the
smallest?

– Given half the elements from the list, what is
the largest?

– Given sqrt(n) elements from the list, how
would you order them?

