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Lower Bounds

Recall that a problem can have upper 
and lower bounds.

The upper bound of a problem is 
basically the worst case runtime of 
the best algorithm that we have 
available so far.

The lower bound is the amount of 
work that any (including the 
optimal) solution would still have 
to do in the worst case.

NOTE: The lower bound is not
defined by the runtime of the best 
algorithm that we can think of, or 
that can be created using the 
techniques of which we know.



Some math of potential interest…

Claim: 

Proof:
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Sorting

We’ve seen how QuickSort has a 
worst-case of n2 yet its expected 
runtime is nlogn.  

In practice, for really small lists, 
InsertionSort works pretty well.

However, when talking about an 
upper-bound for the general 
problem of “comparison-based 
sorting” an algorithm such as 
MergeSort is what we would 
point to since its worst case is 
nlogn.

What about the lower bound for the 
problem?



Lower Bound for Sorting

Let’s think about a decision tree 

that represents data comparisons.

The leaves of the tree would end up 

representing the different ways 

the program could end, thus being 

the different possible re-orderings 

of the input values a1..an.

How many different re-orderings of 

the input values a1..an exist?

How many levels are required in 

our decision tree?



log(n!)∈Θ(nlogn)

Now that we know the height of the 

optimal decision tree would be at 

least log(n!) we need to prove it is in 

Θ(nlogn).

Big-O: 

∃c,n0>0,∀n∈Z≥n0, log(n!)≤cnlogn

Big-Ω: 

∃c,n0>0,∀n∈Z≥n0, cnlogn≤log(n!)



Merging Two Lists

Earlier, we looked at the problem 

where we have two ordered lists of 

equal sizes that we want to merge 

into a single ordered list.

We looked at an algorithm to do this 

as part of looking at MergeSort.  If 

the length of each list was m, then in 

the worst case the algorithm for 

merging two lists runs in 2m-1 time.

This sets an upper bound to the 

problem for us.

What is the lower bound for the 

problem in the worst-case?



Searching a List

When searching an unordered list 

for a specific value, what is the 

lower bound?

Note that there multiple ways to 

generate potential lower bounds, 

just like there are many ways to 

write algorithms for the upper 

bound.

We look for higher and higher 

lower bounds and lower and lower 

upper bounds, until (ideally) they 

match.



Searching an Ordered List

When searching an ordered list 

for a specific value, what is the 

lower bound?



Finding the 2nd Smallest

We can find the 2nd smallest element 

of an unordered list of n values in (n-

1)+(n-2) or 2n-3 time “trivially”.

Can we do better?  We know in the 

comparison-based model that by 

using information we gain along the 

way we can find the minimum and 

maximum at the same time using 

only 3n/2-2 comparisons.

What if I said we can find the 2nd

smallest element using only (n-

1)+(┌log2(n)┐-1) comparisons.



What about other decisions?

A “comparison” can be thought of as the 
decision “Given these two values, how 
would you order them?”

The decision tree approach that we used 
to determine a lower bound for searching 
an ordered list and sorting an unordered 
list can be used with decisions other than

comparisons.

For example, what if what we counted as a 
single “decision” was:

– Given 8 elements from the list and a search 
key, does that key match any of the 8 
elements?

– Given 20 elements from the list, what is the 
smallest?

– Given half the elements from the list, what is 
the largest?

– Given sqrt(n) elements from the list, how 
would you order them?


