
Linear Time Sorting?

Sorting in Linear Time

We proved that when we are using a

comparison-based model, the best we

could do was Ω(nlogn) runtime in the

worst case of an algorithm.

What if we change models?

– Might we have new restrictions (recall

that our sorts so far work on any types

of comparable data).

– Could we have certain types of data

where the runtime is vastly improved?

Memory “Sort” on Unique Integers

Create arr[MAXINT] = {0}

For each value in the input,

arr[value]=1;

Traverse arr from 1 to MAXINT and

rebuild sorted list of values!

of comparisons to data?

amount of work done?

Counting Sort

Used with integers (or objects with
integer keys).

Values do not need to be unique.

max=Max(arr);
min=Min(arr);
range=max-min+2;
count=new array[range];
temp=new array[n];
for i=1 to range

count[i]=0;
for i=1 to n

count[arr[i]-min+1]++;
for i=2 to range

count[i]+=count[i-1];
for i=n to 1

temp[count[arr[i]-min+1]] = arr[i];
count[arr[i]-min+1]--;

for i=1 to n
arr[i]=temp[i];

Radix Sort

The ordering of the data must be such

that if we perform a stable sort (if two

values match, their relative order

doesn’t change in the list) based on

the individual positions of the data

going “right to left” we will end up

with the data correctly sorted.

ie: sort padded integers by column:

738 561 007 007

059 132 132 059

132 �007 �738� 132

007 738 059 561

561 059 561 738

Question (1)

If we have n b-bit integers, can we

sort them in Θ(b·n) time?

Question (2)

How many bits are used to represent

the numbers in the range 0…n-1?

Question (3)

What if we group the bits into clusters

of size r?

Question (4)

Can we sort n values that are in the

range 0..n2 in O(n) time?

“When/How” Radix Sort

We have seen that certain approaches
are really order nlogn while others
are really linear.

How do we know the “right” radix to
use (what should we cluster together
as a column)?

In a generic sense, we can show that
the best radix sort for n values over
a range of s is order nlogs/ logn.

So, in the case of n values over a
range of nn the radix sort would at
best give us a runtime of n2.

Bucket Sort

The sort runs in linear expected time.

We assume input that is uniformly

distributed across the range of values.

Consider integers between 1 and 1000.

Create n “buckets” of equal range size

(eg: 1…
1000

/n,
1000

/n+1…2*
1000

/n, …)

If each bucket is ordered, then we can

obtain an ordered full list by traversing

the buckets in order.

Hash Tables and Buckets

As a side-note, there are hash table

implementations where hash clashes

are dealt with by creating buckets in

positions of the table, rather than by

looking for the next available open

spot in the table.

On top of that, the data structure used

for those buckets can get very clever

(and can even change when a bucket

exceeds a certain size).

