
Clever Linear Time Algorithms

Maximum Subset

String Searching

Maximum Subrange

Given an array of numbers values[1..n] where some are negative
and some are positive, find the subarray values[start..end] that
has the maximum sum.

Imagine the following approach:
start=0; end=-1; maxSum=0;

for possibleStart = 1 to n {

localSum=0;

for possibleEnd = possibleStart to n {

localSum += values[possibleEnd]

if (localSum > maxSum) {

start = possibleStart;

end = possibleEnd;

maxSum = localSum;

}

}

}

Does the algorithm work? What is the runtime?

Maximum Subrange Run Time

The approach presented on the previous slides has
two nested loops. The outer loop always goes
from 1 to n. The inner loop starts based on the
current value of the outer loop, but we have seen
things like this before…

This algorithm would take O(n2) time.

We can do better!

The problem can be solved in O(n) time.

Maximum Subrange in Linear Time

To approach solving this problem in linear time, consider
that as you pass through the information you can make
some local decisions.

Consider minimum finding. You can call the first
element in the smallest so far and store it. Then, as
you traverse the rest of the list, if you see something
smaller, then it is the smallest so far so you should
store that instead. Transitivity means you never have
to “look back” with this. At the end, the smallest so
far is the true smallest.

Something to think about for this problem is the fact
that if you have a running sum from a starting point,
then if (for example) it ever goes negative then you’ve
passed the best ending point for that starting point.

Searching within a string of text

If you had a pattern of length m and a large block of text
of length n, what could the worst-case search time be?

Consider

P: AAAAAAB

T: AAAAAAAAAAAB

Coding a straight-forward (brute force) solution, you might
have something O(n·m) as your algorithm. If the pattern
was large, this would be poor runtime in practice.

{yes, since once you shift the pattern past the end of the
block of text you can stop so it is really something like
O((n-m+1)·m) but we can remove lower-order terms to get
a general sense}

Searching within a string of text in pure linear time

If you had a pattern of length m and a large block of text
of length n, could we perform the search in the worst-
case scenario in linear time of just n?

What lessons could be learned from minimum finding and
maximum sub-range in terms of think about what you’ve
seen so far and avoiding “looking back” in the list?

Knuth-Morris-Pratt (KMP) Algorithm

Given a pattern (P) and a text block (T) you preprocess P to compute
a zero-indexed array sp[] where sp[pos] contains the length of longest
Proper prefix of P that matches a suffix of P[0..pos]

The idea here is essentially “If I hit a mismatch after a partial match,
could the past several characters have actually represented the start
of the pattern I’m looking for?”

During the execution, this sp array will be used to help us figure out
how “far we can jump ahead” when we reach a mismatch.

ABCDABCD

pos=11

sp[11]=4

P EFGH C….

ABCD

Tracing KMP

We compare P with T until finding a mismatch.
We’ll call that position i+1 in P and j+1 in T.

T

Mismatch at 12 gives i=11

Mismatch at 24 gives j=23
E

CP

Shifted P

We then logically shift P using the sp value.
This allows the first sp[i] characters to match T[(j-sp[i]+1) .. j].

We then continue comparing from P[sp[i]] and T[j+1]

ABCDABCD

pos=11

sp[11]=4

P EFGH

ABCDABCD EFGH

ABCD EFGH

CABCDABCD EFGH

ABCDT

new j=23
EABCD EFGH

new i=4

C….

Make the sp array for… (answers on next slide)

pattern: AAAAAAA

pattern: AAAAAAB

pattern: ABACABC

Answers…

index: 0123456

pattern: AAAAAAA

sp: 0123456

index: 0123456

pattern: AAAAAAB

sp: 0123450

index: 0123456

pattern: ABACABC

sp: 0010120

Example to Trace

Pattern: GACGGACA

SP[] array: 00011230

Let’s keep track of comparisons as we trace…

G A C G G A G A C G G A C A G A C G

G A C G G A G A C G G A C A G A C G

More examples to try to pattern match…

index: 0123456

pattern: AAAAAAA

sp: 0123456

index: 0123456

pattern: AAAAAAB

sp: 0123450

AAAAABAAAAAABAAAAAAA

Another example to try…

index: 0123456

pattern: ABACABC

sp: 0010120

ABABBABAABABACABC

Pragmatic note…

The approach presented here (and many other places) has
two pragmatic flaws.

(1)You have to special-case a failure on the first
character in the pattern.

(2)You store a value for “what if I mismatch after I’ve
already found the pattern” which is extraneous.

For this reason it seems that most implementations
typically shift everything over one position in the sp array,
and then puts a -1 into the 0 index.

I’ve also seen others that might be a mixture of different
generations of KMP and/or might incorporate other mods.

Thought Question

Could you get something with better than linear time as its
worst case? expected case?

If this topic really interests you, you might be interested in:

- Rabin-Karp Algorithm

- Boyer-Moore Algorithm(s)

- Applications of Finite State Machines to this…

- Bioinformatics…

Some Interesting Links

http://www.inf.fh-flensburg.de/lang/algorithmen/pattern/kmpen.htm

(algorithm)

http://whocouldthat.be/visualizing-string-matching/

(interactive trace, slightly different number use but “animation” is still
the same)

http://www.ics.uci.edu/~goodrich/dsa/11strings/demos/pattern/

(interactive trace, not currently working)

