
NP Problems 



P -vs- NP

P = polynomial time

– There are many problems that can be 

solved correctly using algorithms that 

run in O(nc) time for some constant c.

– NOTE: We can say that an nlogn

algorithm is in P since nlogn∈O(n2).

NP = non-deterministic polynomial 

time

– There are also many problems where 

you can look at a proposed solution to 

a problem and determine whether it is

a valid solution in polynomial time.

– This “proposed solution” is typically 

called a certificate.



Non-Deterministic?

The “non-deterministic” part of the 

name “NP” comes from the idea that 

you could (in theory) run these 

verification checks on LOTS (all) 

potential solutions simultaneously 

on a non-deterministic machine.

We will just say that a problem is in 

NP if a “certificate” can be verified 

in polynomial time.



Satisfiability (SAT)

Given a Boolean expression over n
variables in conjunctive normal 
form, is there a way to assign values 
to the n variables that will make the 
entire expression true?

For example, the following are each a 
simple example of that type of 
question on  just two variables:

(u OR ~v) AND (~u OR v)

~u AND (u OR v) AND (u OR ~v)  

For the general problem on any type 
of Boolean expression there is no 
known polynomial time solution as 
of now but what about some general 
sub-cases?



CNF

Disjunction = “or’

Conjunction = “and”

We’ll define a clause as a disjunction

of some number of Boolean variables.

When a Boolean expression is in  

“conjunctive normal form” that means 

that it contains an arbitrary number of 

clauses joined by conjunction.

Examples:

– (A∨C) ∧ (B∨C)

– (A∨B∨C) ∧ (A ∨ ~ C) ∧ (~B∨C)



#-CNF

We’ll say that a Boolean expression is 

a #-CNF Boolean expression if every 

disjunctive clause is a disjunction of 

exactly # items (again, the clauses are 

joined by conjunction).

From our previous examples the first 

one of (A∨C) ∧ (B∨C) is 2-CNF but 

the second one doesn’t have a 

consistent pattern so wouldn’t be any 

#-CNF as expressed.



2-SAT

In “2-SAT” you are given a 2-CNF 

Boolean expression and are asked 

whether there is a set of assignments 

to the variables that will cause the 

entire expression to evaluate to TRUE.

For example, given:

– (A∨C) ∧ (B∨C)

one valid solution is A=true, B=true.

Note that there MIGHT be more than 

one solution; we just care whether 

there IS a solution in this problem.



Is this satisfiable?

(A ∨ C) ∧

(A ∨ ~D) ∧

(B ∨ ~D) ∧

(B ∨ ~E) ∧

(C ∨ ~E) ∧

(A ∨ ~F) ∧

(B ∨ ~F) ∧

(C ∨ ~F) ∧

(D ∨ ~G) ∧

(F ∨ ~G)

I have no idea at a glance...



APT Algorithm

Aspvall, Plass, and Tarjan - 1979

Their idea was to construct a graph where 

each variable is a vertex and the negation of 

each variable is a vertex.  Now, for each 

clause (X∨Y) add a pair of directed edges 

~X�Y and ~Y�X to the graph.

– (think back to 250 for why this makes sense)

Then, run a strongly connected components 

algorithm (like the |V|+|E| one by Tarjan we 

saw earlier in the semester) on this graph.

We can now say that the 2-CNF expression 

that was used to construct the graph is 

satisfiable if and only if no variable and its 

negation appear in the same strongly 

connected component.



Let’s start with a small one…

(~A∨~B)∧(~A∨~C)∧(A∨~D)∧

(~B∨~C)∧(B∨~D)∧(B∨D)

Build the graph.

Identify the largest SCCs.

Check for a variable and its negation.

What’s the runtime in terms of the 

number of Boolean variables?



Assigning Truth Values

Once you know whether or not a 2-CNF 

Boolean expression can be satisfied, if 

the answer is that it can you still need to 

assign truth values that satisfy it…

• We first “condense” the graph by 

treating the SCCs as nodes.

• We then perform a topological sort on 

that new graph to order the SCCs.

• We then visit the SCCs in that order, 

and for each “item” in the SCC, if 

there is no truth value associated to its 

variable, we assign one such that the 

“item” is true.



3-SAT

In “3-SAT” you are given a 3-CNF 

Boolean expression and are asked 

whether there is a set of assignments 

to the variables that will cause the 

entire expression to evaluate to TRUE.

Question: Do you think there is a 

similar technique for solving this 

variation in polynomial time?



3-SAT

In “3-SAT” you are given a 3-CNF 

Boolean expression and are asked 

whether there is a set of assignments to 

the variables that will cause the entire 

expression to evaluate to TRUE.

There is currently no known 

polynomial time solution for 

this problem.

– Why do we care that this is the 

case?

• In 1971 it was established as an  

NP-Complete problem by Cook.


