
CMSC 425 : Spring 2018 Dave Mount and Roger Eastman

Homework 1

Due: Wed, March 28, 11:00pm. Submit through ELMS as a pdf file. It can either be distilled
from a typeset document or handwritten, scanned, and enhanced (using an app like CamSanner).
Beware that scanned homeworks that are not clearly legible may be returned to you, requiring
rescanning and possibly recopying. Avoid writing on both sides of the paper, since the writing can
bleed through to the other side.

Late policy: Up to 6 hours late: 5% of the total; up to 24 hours late: 10%, and then 20% for each
additional 24 hours.

Problem 1. Short answer questions.

(a) Give two examples that might arise in a game implemented in Unity, one where you
want a rigid-body to have a collider and one where you want a trigger.

(b) You have a triangle in the plane defined by three points a, b, and c (see Fig. 1). You
would like to interpolate 5 equally-spaced points p[0], . . . , p[4] where p[0] = a and p[4] is
the midpoint between b and c. For 0 ≤ i ≤ 4, give a formula that expresses p[i] as an
affine combination of the points a, b, and c. (You may introduce additional temporary
points if you like, but express them as affine combinations of the original points.)

a

b

c

p[0]

p[2]

p[3]

p[4]

p[1]

Figure 1: Problem 1(b): Affine combinations.

(c) In Unity, you want to rotate an object through 90◦ degrees to occur smoothly over a
period of 4 seconds. In your Update function, how many degrees of rotation should you
apply? (Hint: Use the value of Time.deltaTime.)

Problem 2. Your first assignment in your new job working for a game-engine company is to
design a function that determines whether a sphere collider and a capsule collider intersect in
3-dimensional space. We will walk through the steps to obtain the mathematical conditions
behind this test and then derive a C# function to do it.

The sphere collider has center c = (cx, cy, cz) and radius r (see Fig. 2(a)). It consists of all the
points whose distance from c is at most r. The capsule collider is given by three quantities:
p = (px, py, pz) and q = (qx, qy, qz) are the endpoints of the central axis of the collider and s
is its radius. The collider consists of all the points whose distance from the line segment pq

1



(b) (c)(a) (d)

p

q

c
r

s p

q

c~v

~u

p

q

c

t

`

p

q = t′ t

c

Figure 2: Problem 2: Sphere/Capsule collision.

is at most s. Let us make the simplifying assumptions that p, q, and c are all distinct points,
and that c does not line on the line passing through p and q.

Define ~u to be the vector directed from p to q (see Fig. 2(b)), and define ~v to be the vector
directed from p to c. Note that these should not be normalized to unit length. For example,
‖~u‖ should equal the length of the segment pq.

(a) Using the operations of affine and Euclidean geometry, explain how to compute ~u and ~v
from p, q, and c. (Hint: If this seems easy, it is. We’re just getting started.)

Consider the infinite line ` passing through p and q. Let t be the point on ` such that the
line segment tc is perpendicular to ` (see Fig. 2(c) and (d)). (Note that t may generally lie
outside the line segment pq, and this is fine for now.)

(b) Using the operations affine geometry and Euclidean geometry, explain how to compute
the point t. (Hint: The vectors ~u and ~v from part (a) should come in handy.)

It is a fact (which you do not need to prove) that if t lies within the line segment pq then it
is the closest point on this segment to c. If not, the closest point to c is one of the endpoints,
p or q.

(c) Explain how to modify your solution to (b) to determine the point t′ on the line segment
pq that is closest to c. (Hint: Just explain how to modify your solution to (b) to achieve
this.)

(d) Combining the results of the previous parts, present a test (in mathematical notation)
that determines whether the two colliders intersect. (Note: The boundaries do not
need to intersect. If one collider is completely contained within the other, they are still
considered to intersect.)

(e) Present a C# function with the following signature that implements your intersection
test:

bool SphereCapsuleCollide(Vector3 c, float r, Vector3 p, Vector3 q, float s)

You may make use of the basic math/geometry functions that Unity provides (e.g.,
Vector3 methods or Mathf functions), but you cannot use more advanced functions (e.g.,

2



Unity’s CapsuleCollider class methods). Exact syntactic correctness is not essential, but
your program should be close to valid C# code.

Problem 3. Inspired by Tiny Planet videos and similar games (see Fig. 3(a)), you have decided
to create a game where a player moves around the surface of a sphere. In order to implement
your idea, you will need to define a coordinate frame for the player object.

p

q

(a) (b)

c

p

q

~f

~r

~u

(c)

Figure 3: Problem 3: Tiny-planet coordinate frame.

Let us assume that the sphere is centered at a point c, and it has a radius of s units. The
player’s frame will be centered at some point p that lies on the sphere. In order to indicate
the direction in which the player is facing, a second point q 6= p is given on the surface of the
sphere (see Fig. 3(b)). These two points define a great circle on the sphere. The player is
situated so that its vertical axis is aligned with the vector from c to p, and its forward-looking
vector is directed tangent to the sphere at point p along the smaller arc of the great circle
containing p and q (see Fig. 3(c)). (Let us make the simplifying assumption that p and q
are not polar opposites from each other, for otherwise there are infinitely many great circles
through p and q.)

The objective of this problem is to define an orthonormal coordinate frame for the player
object. The origin of this frame is p. The basis vectors are:

• ~u: “up” relative to the player (along the ray from c through p)

• ~f : “forward” relative to the player (tangent to the great circle through p and q)

• ~r: “right” relative to the player (perpendicular to both ~u and ~f)

(a) Explain how to compute the above three basis vectors using the operations of affine and
Euclidean geometry. Be sure that the final vectors are normalized to unit length.

Hint: Trigonometry and calculus are not needed to solve this problem. This can all be
done using the standard basic of Euclidean geometry (such as affine combinations, dot
product, and cross product). It is easiest to compute these in the order ~u, then ~r, then
~f .

3



(b) Present a C# function with the following signature that implements your construction:

void PlayerFrame(Vector3 c, float s, Vector3 p, Vector3 q,

out Vector3 u, out Vector3 f, out Vector3 r)

You may make use of the whatever standard math/geometry functions that Unity pro-
vides.

Note: In your answers to parts (a) and (b), state explicitly whether you are assuming a
right-handed or left-handed world coordinate system. Standard math textbooks assume a
right-handed system, meaning that positive rotations are counterclockwise and the cross-
product follows the right-hand rule. However, Unity uses a left-handed system, and this
implies that positive rotations are clockwise and the cross-product follows the left-hand
rule. For example, see https://docs.unity3d.com/ScriptReference/Vector3.Cross.html.

Problem 4. Consider the series of shapes S0, S1, . . . shown in Fig. 4 below. With each step,
each line segment of length x is replaced by four segments each of length x

√
2/4. Let S∗ =

limi→∞ Si.

S0 S1 S2

1 √
2/4

S3 . . .

(0, 0)

Figure 4: Problem 4: Fractals and L-systems.

(a) Derive the fractal dimension of the boundary of S∗. You may express your answer as
the ratio of two logarithms.

(b) Derive an L-system to generate this shape. (For the sake of consistency, we recommend
that you start in the lower-left corner of the unit square and proceed counterclockwise
around the boundary.) In particular, answer the following:

(i) What are the values of the step-size d and angle increment δ? These values may
change from one shape to the next. If so, let di and δi denote the step size and angle
increment for generating Si. Assume that the side length of S0 is 1.

(ii) What are the variables (symbols) V of your L-system?

(iii) What is the start symbol (or start string), ω, for your system?

(iv) What are the production rules, P? (Hint: Be sure that at the end of each sequence,
your current state is properly oriented to start the next sequence.)

(For guidance on solving this, see March 10 update of Lecture 11 on fractals and L-systems.

Problem 5. For your new game, you will be animating a model of a tower crane in 2-dimensional
space. The crane’s parts are illustrated in Fig. 5(a). The structure sits on a base, which we
take to be the origin of the crane’s coordinate system.

4

https://docs.unity3d.com/ScriptReference/Vector3.Cross.html
http://www.cs.umd.edu/class/spring2018/cmsc425/lectures.shtml


The vertical mast rises upwards H units to a point where the operator’s booth sits. From here
there is a horizontal jib upon which slides a trolley at a distance of W units from the operator.
The hook is suspended D units beneath the trolley. (Increasing the value of D causes the
hook to drop lower.) The reference (or bind) pose is such that H0 = 130, W0 = 100, and
D0 = 70. There are four coordinate frames as shown in Fig. 5(b): (a) the base, (b) the
operator, (c) the trolley, and (d) the hook.

(a) (b)

mast

jib trolley

hook

base

H0 = 130

W0 = 100

D0 = 70

a

b c

d

operator

p
20

40

100

Figure 5: Problem 5: Animating a tower crane.

(a) Following the naming convention for the local pose transformations (given in Lecture 9)
express the following local pose transformations a 3× 3 homogeneous matrices.

(i) T[c←d], which translates coordinates in the hook frame to the trolley frame.

(ii) T[b←c], which translates coordinates in the trolley frame to the operator frame.

(iii) T[a←b], which translates coordinates in the operator frame to the base frame.

(Hint: It may help to recall the form of a translation matrix from Lecture 6.)

For example, a point p located 20 units below the hook would be represented in the hook frame
as p[d] = (0,−20, 1). Its coordinates with respect to the trolley would be p[c] = (0,−90, 1).
Thus, the transformation T[c←d] should satisfy

T[c←d] ·

 0
−20

1

 =

 0
−90

1

 .

(b) Show that by multiplying these matrices, we obtain a matrix T[a←d] that maps point
p into its coordinates with respect to the base frame. Verify your resulting matrix by
showing that

T[a←d] · p[d] = p[a] =

 100
40
1

 .

5


