
CMSC 425 : Spring 2018 Dave Mount and Roger Eastman

Solutions to Homework 1

Solution 1:

(a) Collider: (i) Attached to a wall, preventing objects from passing through it. (ii) Attached
to the player to signal when it has been hit by a projectile.

Trigger: (i) Attached to a doorway, signaling whenever some game object walks into or out
of the room. (ii) Associated with a large ball enclosing an NPC, signaling that a threat is
approaching and that action is needed (fight or flight).

(b) Letm = 1
2b+

1
2c be the midpoint of bc. For 0 ≤ i ≤ 4, let αi ← i/4. Then p[i] = (1−αi)a+αim.

(c) With each update call we rotate (in degrees) by (90/4)·Time.deltaTime = 22.5·Time.deltaTime.
For example, if the rotation had been about the y-axis (Vector3.up), then we could do this
with the Unity command

transform.Rotate (Vector3.up * 22.5f * Time.deltaTime);

Solution 2:

(a) ~u = q − p = (qx − px, qy − py, qz − pz), and ~v = c− p = (cx − px, cy − py, cz − pz).

(b) We can obtain t as follows. Let ~w be the orthogonal projection of ~v onto ~u. That is, ~w ← α~u,
where (~u · ~v)/(~u · ~u). Then t = p+ ~w.

(c) Consider α from (b). Observe that α is a stretch value, which is 0 when c projects onto p and
is 1 when c projects onto q. If 0 ≤ α ≤ 1, then t lies within the line segment pq. If α < 0 or
α > 1, then t lies outside this segment, being beyond p if α < 0 and beyond q if α > 1. Let
clamp(x, a, b) be a function that clamps the scalar x to the interval [a, b].

α′ ← clamp(α, 0, 1), t′ ← (1− α′)p+ α′q.

We could express t′ equivalently as p+ α′~u, which is a bit simpler to compute.

(d) The two colliders intersect if and only if the distance between c and t′ is at most r + s:

‖t′ − c‖ =
√

(t′x − cx)2 + (t′y − cy)2 + (t′y − cy)2 ≤ r + s.

(e) In the code below the variable alpha takes the role of both α and α′, and variable t takes the
role of t′ (since it is based on the clamped value of α). The code below is quite clean since it
does not need reference individual coordinates.

1



bool SphereCapsuleCollide(Vector3 c, float r, Vector3 p, Vector3 q, float s) {

Vector3 u = q - p; // vector from p to q

Vector3 v = c - p; // vector from p to c

float alpha = Vector3.Dot(u, v) / Vector3.Dot(u, u); // projection factor

Mathf.Clamp(alpha, 0, 1); // clamp alpha to [0, 1]

Vector3 t = p + u * alpha; // t is the closest point to c along pq

return Vector3.Distance(c, t) <= r + s; // close enough to collide?

}

Solution 3: As mentioned in the problem description, the player’s frames origin is p. Here is
how to compute the other basis vectors.

(a) (For this part, we assume the right-hand rule. For a left-handed system, reverse the arguments
to cross products.) First, the player’s up-vector ~u is just the normalization of the vector from
c through p, that is

~u ← normalize(p− c) =
p− c
‖p− c‖

.

(Recall that the length of a vector ~v can be computed as ‖~v‖ ←
√
~v · ~v.)

Next, to compute the player’s right-vector ~r, we observe that it must be perpendicular to the
equatorial plane containing p and q, or equivalently, it must be perpendicular to both of the
up-vector ~u and ~w = q − c. Using the standard right-handed cross product, we have

~r ← normalize(~w × ~u), where ~w ← q − c.

Finally, to compute the forward vector ~f , we observe that this vector is perpendicular to both
~u and ~r. Given the relative orientations of the vectors, we have

~f ← ~u× ~r.

Note that there is no need to perform a normalization here. Since ~u and ~r are already of
unit length and perpendicular to each other, it follows that the above cross product returns
a vector of unit length.

(b) (For this part, we assume the left-hand rule as does Unity. For a right-handed system, reverse
the arguments to cross products.) The code below follows the general structure of the above
methods. We assume that p, c, and q are not collinear.

void PlayerFrame(Vector3 c, float r, Vector3 p, Vector3 q,

out Vector3 u, out Vector3 f, out Vector3 r) {

u = (p - c).normalized; // up vector

Vector3 w = q - c; // another vector on the equatorial plane

r = Vector3.Cross(u, w).normalized; // right vector

f = Vector3.Cross(r, u); // front vector

}

2



Solution 4:

(a) The boundary of S0 can be covered by 4 circular disks of diameter 1. At each new stage,
each edge of length x in the previous shape is replaced by 4 edges each of length

√
2/4. Let

εi = (
√

2/4)i. It follows that we can cover the boundary of Si with 4 ·4i = 4i+1 disks of radius
εi. Thus, the fractal dimension is

lim
i→∞

lnN(Si, ε
i)

ln 1/εi
= lim

i→∞

ln 4i+1

ln(4/
√

2)i
= lim

i→∞

i+ 1

i

ln 4

ln(4/
√

2)
=

ln 4

ln(4/
√

2)
=

4

3
.

We are using the fact that limi→∞(i+1)/i = 1. The final simplification to 4/3 is not required,
but it can be derived by expressing everything as a power of 2. That is, ln 4/ ln(4/

√
2) =

ln(22)/ ln(22/21/2) = 2 ln 2/(3/2) ln 2 = 2/(3/2) = 4/3.

(b) (i) The initial step size is the length of the unit square, d = 1. With each new iteration, the
length decreases by a factor of

√
2/4, and therefore di = (

√
2/4)i. Although the turns

are multiples of 90◦, the starting heading is a multiple of 45◦, and so we will set the
angular displacement to δ = 45◦. (See below for an alternative solution.)

(ii) The variables V of the system consist of {F,+,−}, which have the standard turtle-
geometry interpretations.

(iii) The starting string ω draws the unit square. Since δ = 45◦, we need two turns at each
corner. Thus we have ω = F + +F + +F + +F. (We could add an extra ++ to the end
so that the turn angles sum to exactly 360◦.)

(iv) We start by making a 45◦ clockwise turn (−), then draw a segment (F), then a 90◦

counterclockwise turn (++), then draw two segments (FF), then a 90◦ clockwise turn
(−−), and then end with one more segment (F).

There is an issue, however. We have made one more clockwise than counterclockwise
turn, and hence we do not end in the same direction that we started. This is an issue
because we have concatenated these sequences together under the assumption that we
end each sequence in the same direction that it started. To correct this we add a final
counterclockwise turn (+). Thus we have the following single production rule:

p = {F → − F + +F F−−F+}.

Alternate solution: Here is an arguably simpler way to fix the heading issue. Observe that
the initial heading rotates 45◦ clockwise with each level. Thus, for Si we define the initial
state of the turtle to be (0, 0,−i · 45◦). Now, since the turtle starts off pointing the proper
direction, we can omit the initial “−”, and (because we are balanced) we can also omit the
final “+”. If we do this, then all the turns are ±90◦, and so we can define δ = 90◦. This
means that we can replace the “++” and “−−” above with singles “+” and “−”. This leads
to the following simpler production rule:

p = {F → F + F F− F},

and ω = F + F + F + F.

3



Solution 5:

(a) In going from frame d to c, a point’s y-coordinate decreases by D0 units, in going from c to b,
a point’s x-coordinate increases by W0 units, and in going from b to a, a point’s y-coordinate
increases by H0 units. Therefore, we have

T[c←d] =

 1 0 0
0 1 −70
0 0 1

 T[b←c] =

 1 0 100
0 1 0
0 0 1

 T[a←b] =

 1 0 0
0 1 130
0 0 1

 .

(b) By multiplying these matrices together, we obtain a matrix

T[a←d] =

 1 0 100
0 1 60
0 0 1

 .

As a check of correctness, we see that

T[a←d]p[d] =

 1 0 100
0 1 60
0 0 1

 0
−20

1

 =

 100
40
1

 = p[a],

as desired.

4


