
CMSC 425 : Spring 2018 Dave Mount and Roger Eastman

Homework 2

Solution 1:

(a) The set of centers of all maximal disks is called the medial axis. In path planning, following
the medial axis corresponds to computing a maximum clearance path (which stays as far
away from obstacles as possible).

(b) (i) A heuristic is admissible if it is not greater than the graph distance, that is, h(u) ≤ δ(u, t).

(ii) A heuristic is consistent if for all vertices u′ and u′′, h(u′) ≤ δ(u′, u′′) + h(u′′)

(iii) The heuristic h(u) = 3 · dist(u, t) is neither admissible nor consistent (see Fig. 1).

tu 2 3
u′′ tu′

(a) (b)

2

Figure 1: Problem 1(b): A∗ heuristic properties.

To see that it is not admissible, consider the graph in Fig. 1(a), or generally any graph
where there is an edge between u and t. We have

h(u) = 3 · dist(u, t) = 3 · 2 > 3 = δ(u, t).

To see that it is not consistent, consider the graph in Fig. 1(b), or generally any graph
where the three vertices u′, u′′, and t are collinear. We have

h(u′) = 3 · dist(u′, t) = 3 · (2 + 3) > 2 + 3 · dist(u′′, t) = δ(u′, u′′) + h(u′′).

(c) The behavior tree for the hungry student is shown in Fig. 2. The “look in refrigerator” nodes
succeed if food is found and fail otherwise. The “try to pay” node succeeds if you have enough
money, and fails otherwise.

?

Look in our
refrigerator

Look in friend
refrigerator

Move

into room

Go to

friend’s friend’s7-Eleven
Eat it

Select

food
Try to payEat it Eat it

Go to

Figure 2: Problem 1(c): Behavior tree.

1



(d) (i) Sends acknowledgments when packets are received: TCP

(ii) Packets can be ordered through the use of sequence numbers: TCP

(iii) Uses checksums to detect errors in packet transmission: TCP

(iv) Has lower overhead in terms of bandwidth and latency: UDP

(e) According to the lecture, eliminating fog is an example of Information Exposure.

Solution 2: The number of triangles is T (n, h) = n+ 2h− 2. The number of chords is C(n, h) =
n+ 3h− 3.

Extra Credit: Here is a simple proof by a double induction, on n and h. We will build a
triangulation up vertex by vertex and hole by hole. (The proof is not fully general, since it builds a
specific triangulation, not a general one. A more general proof comes by disassembling an existing
triangulation.) For the basis case, we start with a single triangle, that is, (n, h) = (3, 0) (see
Fig. 3(a)). We have one triangle and no chords. The above formulas yield T (n, h) = 3 + 0− 2 = 1,
and C(n, h) = 3 + 0 − 3 = 0, as desired.

(a) (b) (c)

(n, h) = (3, 0) (n− 1, h) (n, h) (n− 3, h− 1) (n, h)

Figure 3: Problem 2: Triangulation size.

There are two ways to add to the triangulation. First, we can add a new “ear” by attaching a
new triangle to an edge of the boundary of the polygon (see Fig. 3(b)) or the boundary of some
hole. This results in the addition of one new vertex, no new holes, one new chord, and one new
triangle. Let n denote the number of vertices after the addition. Applying the induction hypothesis
we have

T (n, h) = 1 + T (n− 1, h) = 1 + ((n− 1) + 2h− 2) = n+ 2h− 2

C(n, h) = 1 + C(n− 1, h) = 1 + ((n− 1) + 3h− 3) = n+ 3h− 3,

as desired.
Second, we insert a new hole. The most trivial example of a hole is a single triangle added

in the interior of some existing triangle and connecting it to the three vertices of the triangle (see
Fig. 3(c)). This yields three new vertices, one new hole, six new chords, and a net increase of five
triangles (six created and one destroyed). Letting n and h denote the number of vertices and holes
after the addition, we have

T (n, h) = 5 + T (n− 3, h− 1) = 5 + ((n− 3) + 2(h− 1) − 2) = n+ 2h− 2

C(n, h) = 6 + C(n− 3, h− 1) = 6 + ((n− 3) + 3(h− 1) − 3) = n+ 3h− 3,

as desired.

2



Solution 3: We will solve this using two nested loops. The first loop enumerates the edges that
are incident to v. For each such edge e1, we then enumerate the remaining edges on this face until
returning to e1.prev (or equivalently, if you prefer, the twin of e1.onext). To do this, we simply
follow next pointers around the face. See the code block below.

List the edges in the link of e
e1 = eStart = v.incident; // e1 runs through the edges incident to v

do {

e2 = e1.next; // e2 runs through the edges on the face to the left of e1

while (e2 != e1.prev) {

add e2 to L;

e2 = e2.next; // advance to next edge CCW about e1’s left face

}

e1 = e1.onext; // advance to next edge CCW about v

} while (e1 != eStart);

return L;

Solution 4:

(a) We can compute the C-obstacle for an obstacle by “scraping” the robot R around the bound-
ary of the obstacle and drawing the path traced by the reference point (see Fig. 4(a)). The
C-obstacles for O1 and O2 are shown in Fig. 4(b).

tt

O1 O2

s

O1 ⊕−R O2 ⊕−R

Rs

(a) (b) (c)

O1

Figure 4: Problem 2: Building configuration obstacles.

(b) Because the two C-obstacles overlap, there is no path between them. The shortest path goes
around to the left (see the dotted line in Fig. 4(c)).

3


