
CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 9
Basics of Skeletal Animation and Kinematics

Reading: Chapt 11 of Gregory, Game Engine Architecture. The material on kinematics is a sim-
plification of similar concepts developed in the field of robotics, known as the Denavit-Hartenberg
parameters.

Game Animation: Most computer games involve characters that move around in a fluid and
continuous manner. Unlike objects that move according to the basic laws of physics (e.g.,
balls, projectiles, vehicles, water, smoke), the animation of skeletal structures may be subject
to many complex issues, such as physiological constraints (e.g., how to jump onto a platform),
athletic technique (e.g., how a football quarterback throws a pass), stylistic choices (e.g., how
a dancer moves), or simply the arbitrary conventions of everyday life (e.g., how to hold
chopsticks). Producing natural looking animation is the topic of our next few lectures.

Skeletal Model and Tree Structure: The most common form of character animation used in
high-end 3-dimensional games is through the use of skeletal animation. A character is modeled
as skin surface stretched over a skeletal framework which consists of moving joints connected
by segments called bones (see Fig. 1(a) and (b)). Note that “skin” refers to the model’s
surface, which typically includes not only skin but the clothing the model is wearing (see
Fig. 1(c)). Animation is performed by modifying the relationships between pairs of adjacent
joints, for example, by altering joint angles and deforming the skin accordingly. We will
discuss this process extensively later.

(a)

joints
bones

(b) (c)

Fig. 1: (a) and (b) skeletal model and (c) the bind (or reference) pose.

A skeletal model is based on a hierarchical representation where peripheral elements (e.g.,
hands and feet) are linked as children of more central elements (e.g., legs, arms, torso, etc.).
Clearly, a skeletal model can be represented internally as a multi-way rooted tree, in which
each node represents a single joint. The bones of the tree are not explicitly represented, since
(as we shall see) they do not play a significant role in the animation or rendering process.

Lecture 9 1 Spring 2018

https://en.wikipedia.org/wiki/Denavit-Hartenberg_parameters
https://en.wikipedia.org/wiki/Denavit-Hartenberg_parameters


CMSC 425 Dave Mount & Roger Eastman

We will discuss later how the skin is represented. For now, let us consider how the joints are
represented.

We assume that the tree is represented as any standard (rooted, unordered) multi-way tree.
For example, for any node it should be possible to enumerate all the children of this node, to
test whether the node is the root, and if it is not the root to determine its parent node. In this
lecture, we will denote each joint by an integer index, say j, and we will let p(j) denote j’s
parent. If we consider just the parent links, the result is an inverted tree structure, where all
paths lead to the root (see Fig. 2(b)). We can make the assumption that the root is identified
by a special index, say j = 0. In addition, each node will store some internal information, as
will be discussed below.

Bind Pose: Before discussing animation on skeletal structures, it is useful to first say a bit about
the notion of a pose. In humanoid and animal skeletons, joints move by means of rotations1

(as opposed say to translation, which arises with some robots). Assigning angles to the various
joints of a skeleton uniquely specifies the skeleton’s exact geometric structure, called its pose.

When a designer defines the initial layout of the model’s skin, the designer does so relative
to a default pose, which is called the reference pose or the bind pose.2 For human skeletons,
the bind pose is typically one where the character is standing upright with arms extended
straight out to the left and right (similar to Fig. 1(b) above).

Joint Internal Information: Each joint can be thought of as defining its own joint coordinate
frame (see Fig. 2(a)). Recall that in affine geometry, a coordinate frame consists of a point
(the origin of the frame) and three mutually orthogonal unit vectors (the x, y, and z axes
of the frame). Given the skeleton’s inverted tree structure (see Fig. 2(b)), rotating a joint
can be achieved by applying a suitable rotation transformation to its associated coordinate
frame. Each frame of the hierarchy is understood to be positioned relative to its parent’s
frame. In this way, when the shoulder joint is rotated, the descendants’ joints (elbow, hand,
fingers, etc.) also move as a result (see Fig. 2(c)).

Change-of-Coordinates Transformation: In order to determine the motion of the various
bones that result from some joint rotation, we need to know the relationships between the
various joints of the skeleton. There is a very general and elegant way of doing this through
the application of affine geometry. Given any two coordinate frames in d-dimensional space,
it is possible to convert a point (or free vector) represented in one coordinate frame to its
representation in the other frame by multiplying the point (given as a (d + 1)-dimensional
vector in homogeneous coordinates) times an suitable (d+ 1)× (d+ 1) matrix. The resulting
affine transformation is called a change-of-coordinates transformation.

Constructing such transformations is an exercise in linear algebra. For the sake of complete-
ness, let us consider the process in a simple 2-dimensional example. Suppose we have two

1It is rather interesting to think about how this happens for your own joints. For example, your shoulder joint has
two degrees of freedom, since it can point your upper arm in any direction it likes. Your elbow also has two degrees
of freedom. One degree comes by flexing and extending your forearm. The other can be seen when you turn your
wrist, as in turning a door knob. Your neck has (at least) three degrees of freedom, since, like your shoulder, you can
point the top of your head in any direction, and, like your elbow, you can also turn it clockwise and counterclockwise.

2I suspect that the name “bind pose” arises because designers attach or “bind” the skin to the model relative to
this initial pose.

Lecture 9 2 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

30◦

(a) (c)

j0

j2 j3 j4

j5
j1

j0

j2 j3

j4

j1

j5

j0

j1

j2 j3

j4

j5

(b)

Fig. 2: (a) Skeletal model, (b) inverted tree structure, and (c) rotating a frame propagates to the
descendants.

coordinate frames, F and G (see Fig. 3). Let F.o, F.x, and F.y denote F ’s origin point, and
its two basis vectors. Define G.o, G.x and G.y similarly.

G

F

o
x

y

o x

y
G

F

o
x

y

o x

y
G.o[F ] = (4, 2, 1)

G.x[F ] = (2, 1, 0)

G.y[F ] = (−1, 2, 0)

F.o[G] = (−2, 0, 1)

F.x[G] =

2
5,−1

5, 0



F.y[G] =

1
5,

2
5, 0




p
p

Fig. 3: Change-of-coordinates transformation.

Given any point in space, it can be represented either with respect to F ’s coordinate system
or G’s. For any point p, define p[F ] to be p’s homogeneous coordinates relative to frame F ,
and define p[G] similarly for frame G. We can do the same for any vector ~v.

In order to define the change-of-coordinates transformation, we need to know first what G’s
basis elements are relative to F . In the above example, it is easy to verify that

G.x[F ] = (2, 1, 0), G.y[F ] = (−1, 2, 0), and G.o[F ] = (4, 2, 1).

(Recall that we are using affine homogeneous coordinates, where the last component is 0 to
denote a vector or 1 to denote a point.) Also, it is easy to verify that

F.x[G] =

(
2

5
,−1

5
, 0

)
, F.y[G] =

(
1

5
,
2

5
, 0

)
, and F.o[G] = (−2, 0, 1).

To obtain the change-of-coordinates transformations from G to F , define TF←G to be the
transformation that maps a point given in G’s coordinate system to its representation in F ’s
coordinate system. This transformation can be represented as a matrix whose columns are

Lecture 9 3 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

G.x[F ], G.y[F ], and G.o[F ]:

T[F←G] =




2 −1 4
1 2 2
0 0 1


 .

Conversely, to convert the other direction, define TG←F to be the transformation that maps
a point given in F ’s coordinate system to its representation in G’s coordinate system. This
transformation can be represented as a matrix whose columns are F.x[G], F.y[G], and F.o[G]:

T[G←F ] =




2/5 1/5 −2
−1/5 2/5 0

0 0 1


 .

(See any standard reference on linear algebra for a proof.)

Change-of-Coordinates Example: To test this, let’s consider the point p and vector ~v in Fig. 4.

G

F

o
x

y

o x

y
G

F

o
x

y

o x

y

p[F ] = (1, 3, 1)

~v[F ] = (3,−1, 0)p
p

~v ~v

p[G] = (−1, 1, 1)

~v[G] = (1,−1, 0)

Fig. 4: Example of applying the change-of-coordinates transformation.

Clearly, p[F ] = (1, 3, 1) and p[G] = (−1, 1, 1). Applying the above transformations, we obtain
the expected results

T[F←G] · p[G] =




2 −1 4
1 2 2
0 0 1





−1
1
1


 =




1
3
1


 = p[F ],

and

T[G←F ] · p[F ] =




2/5 1/5 −2
−1/5 2/5 0

0 0 1






1
3
1


 =



−1
1
1


 = p[G],

Next, consider ~v. We have ~v[F ] = (3,−1, 0) and ~v[G] = (1,−1, 0). Again, applying the above
transformations, we have

T[F←G] · ~v[G] =




2 −1 4
1 2 2
0 0 1






1
−1
0


 =




3
−1
0


 = ~v[F ],

and

T[G←F ] · ~v[F ] =




2/5 1/5 −2
−1/5 2/5 0

0 0 1






3
−1
0


 =




1
−1
0


 = ~v[G].

Lecture 9 4 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Abstraction Revisited: We have seen the use of homogeneous matrices before for the purpose of
performing affine transformations (that is, for moving objects around in space). We are using
the same mechanism here, but the meaning is quite different. Here the objects are not being
moved, rather we are simply translating the names of points and vectors from one coordinate
system to another. The geometric objects are themselves not moving.

You might wonder, “What’s the difference in how you look at it?” Recall that in affine
geometry we defined points and (free) vectors as different abstract objects, that employ
the same representation (homogeneous vectors). Here, we are distinguishing two different
types of operations (affine transformations versus change-of-coordinates transformations),
but using the same representation (homogeneous matrices) for both. Even though the same
representation is being used, these should be conceptualized as two very different operations.

Joint Transformations: Returning to the problem of skeletal systems, let us assume that we
are working in 3-dimensional space, and consider the skeleton in its bind pose. For any two
joints j and k, define T[k←j] to be the change-of-coordinates transformation that maps a point
in joint j’s coordinate system to its representation in k’s coordinate system. (At this point
we are not considering joint rotations.) That is, if v is a column vector in homogeneous
coordinates representing of a point relative to j’s coordinate system, then v′ = T[k←j] · v is
exactly the same point in space, but it is expressed in coordinates relative to k’s coordinate
frame. (In previous lectures I have used p for points and v for free vectors. Since we are using
p for “parent”, I’ll refer to points by the letter v, but don’t be confused.)

Given any non-root joint j, define the local-pose transformation, denoted T[p(j)←j], to be an
affine transformation that converts a point in j’s coordinate frame to its representation in
its parent’s (p(j)) coordinate frame. Define the inverse local-pose transformation, denoted
T[j←p(j)], to be the inverse of this transformation. That is, it converts a point expressed
relative to j’s parent’s frame back to j’s frame. (Recall that these transformations do not
change the position of a point. They simply translate the same point from its representation
in one frame to another.)

(a) (b)

i x

y

k

x

y

v

v[k] = (2, 0, 1)

v[j] = (6, 0, 1)

v[i] = (3, 6, 1)

j

x

y

Fig. 5: Three joints i, j, and k in a (rather nonstandard) bind pose. The point v is represented in
homogeneous coordinates relative each frame.

Consider three joints i, j, and k, where i = p(j) and j = p(k) (see Fig. 5(a)). The local-pose
transformation for k, T[p(k)←k], can be expressed more succinctly as T[j←k]. Given a point v[k]

Lecture 9 5 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

expressed relative to k’s frame, we can express it relative to j’s frame as

v[j] = T[j←k] · v[k].

Similarly, a point v[j] expressed relative to j’s frame can be expressed relative to i’s frame as

v[i] = T[i←j] · v[j].

Combining these, we can express a point in k’s frame relative to i’s frame by taking the
product of these two matrices

v[i] = T[i←j] · T[j←k] · v[k] = T[i←k] · v[k],

where T[i←k] = T[i←j] · T[j←k]. Clearly, by multiplying appropriate chains of the local-pose
transformations and their inverses, we can walk up and down the paths of the tree allowing
us to convert a point relative to any one joint into its representation relative to any other
joint.

An Example: To make this a bit more concrete, let us consider an example in 2-dimensional
space. Consider the pose shown in Fig. 5(a). (This is not a normal bind pose, since the elbow
should not be bent, but it makes for a more interesting case.) Let i denote the shoulder joint,
j the elbow joint, and k the hand joint. Consider a point v that lies two units beyond the
model’s index finger. Its homogeneous coordinates relative to the hand frame are (2, 0, 1).
(Since the x-axis points up.) Its coordinates relative to the elbow frame are (6, 0, 1), and its
coordinates relative to the shoulder frame are (3, 6, 1) (see Fig. 5(b)). That is,

v[k] =




2
0
1


 v[j] =




6
0
1


 v[i] =




3
6
1


 .

Because k’s coordinate frame lies 4 units along the x-axis relative to j’s coordinate frame, the
local pose transformation T[j←k] (which maps a point in k’s coordinate frame to j’s coordinate
frame) clearly increases the x-coordinate by 4 units. Thus:

T[j←k] =




1 0 4
0 1 0
0 0 1


 .

We can easily check this, since

T[j←k] · v[k] =




1 0 4
0 1 0
0 0 1


 ·




2
0
1


 =




6
0
1


 = v[j],

just as we expected.

Next, consider how to map a point in j’s coordinate frame to its parent’s frame i. Observe
that the y-coordinate of the transformed point (its vertical distance) is the x-coordinate of
the original point. Thus, the middle row of the matrix is (1, 0, 0). The x-coordinate of the

Lecture 9 6 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

new point (its distance to the right of the shoulder) is 3 minus the old y-coordinate. Thus, the
first row of the matrix is (0,−1, 3). Therefore, the transformation that achieves this change
of coordinates is

T[i←j] =




0 −1 3
1 0 0
0 0 1


 .

Again, we can check this, since

T[i←j] · v[j] =




0 −1 3
1 0 0
0 0 1


 ·




6
0
1


 =




3
6
1


 = v[i],

as we expected.

Now, to obtain the transformation T[k←i], we multiply these two matrices (translating from
k to j, then j to i)

T[i←k] = T[i←j] · T[j←k] =




0 −1 3
1 0 0
0 0 1


 ·




1 0 4
0 1 0
0 0 1


 =




0 −1 3
1 0 4
0 0 1




Finally, to check this we have

T[i←k] · v[k] =




0 −1 3
1 0 4
0 0 1


 ·




2
0
1


 =




3
6
1


 = v[i].

Again, this is just what we expect to happen.

Of course, applying this in 3-dimensional space will involve handling 4× 4 matrices and the
associated rotation and translation matrices. While this would be much harder to do by
hand, it can be done in by a similar process that is purely mechanical (and hence, easy to
program).

Forward Kinematics: Next, suppose that in addition to knowing the local-pose transformations
and their inverses, we also know the rotation transformations associated with the individual
joints of the system. Kinematics (also called forward kinematics) is the problem of determin-
ing where a point is transformed as a result of these rotations.

We can apply our knowledge of rotation transformations and the local-pose transformations
and their inverses to solve this problem. For example, recall the point v in our earlier example
(see Fig. 6(a)) Suppose that the elbow is rotated by counterclockwise by 30◦ (see Fig. 6(b)),
and then the shoulder is rotated clockwise by 45◦, that is, counterclockwise by −45◦ (see
Fig. 6(c)). The question that we want to consider, where is the point v mapped to as a result
of these two rotations? Let v′ be its position after the elbow rotation and let v′′ be its position
after both rotations.

Before getting to the answer, recall from our earlier lecture on affine geometry the rotation
transformations in homogeneous coordinates:

Rot(30◦) =




cos 30◦ − sin 30◦ 0
sin 30◦ cos 30◦ 0

0 0 1


 =



√

3/2 −1/2 0

1/2
√

3/2 0
0 0 1


 .

Lecture 9 7 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

(a)

i x

y

k

x

y

v

j

x

y

i
x

y k

x

y

v′′

jy

(b) (c)

i x

y

j
−45◦

k

x

y

v′

x

y

30◦

Fig. 6: Forward kinematics example.

and

Rot(−45◦) =




cos 45◦ − sin 45◦ 0
sin 45◦ cos 45◦ 0

0 0 1


 =




1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 1


 .

We need to decide which frame to use as our reference frame. Let’s use the shoulder joint i,
since it is the most “global”. (Generally, we would select the root of our skeleton tree.) We
saw already how to compute v[i]. Using this as a starting point, let’s first consider the effect
of the elbow rotation. Because the elbow rotation occurs about the elbow’s coordinate frame,
we first need to translate v into its representation with respect to j’s frame (by multiplying
by the inverse local-pose transformation T[j←i]). We then apply the 30◦ rotation about the
elbow joint. Finally, we convert this representation back to the shoulder frame (by applying
the local-pose transformation T[i←j]). Thus, we have

v′[i] = T[i←j] · Rot(30◦) · T[j←i] · v[i].

This yields a representation of v′ relative to the shoulder frame. Since the second rotation
is performed about the shoulder frame, we do not need to perform any change-of-coordinate
transformation. We can just apply the rotation transformation directly. This yields:

v′′[i] = Rot(−45◦) · v′[i].

Putting both steps together, we have

v′′[i] = Rot(−45◦) · T[i←j] · Rot(30◦) · T[j←i] · v[i].

Top-down or Bottom-up? You might wonder why we did the elbow rotation first followed by
the shoulder transformation. Does the order really matter? The issue is that our local-pose
transformations have been built under the assumption that the model is in the bind pose, that
is, none of the joints are rotated. If we were to have performed the shoulder rotation first,
and then attempted to apply the inverse local-pose transformation T[j←i] to convert the result
from the shoulder’s frame to the elbow frame, we would discover that this transformation is

Lecture 9 8 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

no longer correct. The reason is that the entire arm (and the elbow joint in particular) has
moved into a new position, but T[j←i] was defined based on its original position. To avoid
this problem, the transformations should be applied in a bottom-up manner, first rotating the
descendant nodes (e.g., wrist) and then working up to their ancestors (e.g., elbow and then
shoulder).

Take-Away Lesson: I must acknowledge that implementing this by by hand would be a mess
(especially in 3-space), but hopefully you get the idea. By using our local-pose transformations
(and possibly their inverses), we can change to the coordinate frame where the rotation takes
place, then apply the rotation, then translate back. While it would be messy to write down
all the transformations, if we have precomputed the local pose transformations and their
inverses, this can all be programmed in a straightforward manner by traversing the tree (in
postorder) and performing simple matrix multiplications.

Lecture 9 9 Spring 2018


