
CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 11
Procedural Generation: Fractals and L-Systems

Reading: The material on fractals comes from classic computer-graphics books. The material on
L-Systems comes from Chapter 1 of The Algorithmic Beauty of Plants, by P. Prunsinkiewicz and
A. Lindenmayer, 2004. It can be accessed online from http://algorithmicbotany.org/papers/.

Fractals: One of the most important aspects of any graphics system is how objects are modeled.
Most man-made (manufactured) objects are fairly simple to describe, largely because the
plans for these objects are be designed “manufacturable”. However, objects in nature (e.g.
mountainous terrains, plants, and clouds) are often much more complex. These objects are
characterized by a nonsmooth, chaotic behavior. The mathematical area of fractals was
created largely to better understand these complex structures.

One of the early investigations into fractals was a paper written on the length of the coastline
of Scotland. The contention was that the coastline was so jagged that its length seemed to
constantly increase as the length of your measuring device (mile-stick, yard-stick, etc.) got
smaller. Eventually, this phenomenon was identified mathematically by the concept of the
fractal dimension. The other phenomenon that characterizes fractals is self similarity, which
means that features of the object seem to reappear in numerous places but with smaller and
smaller size.

In nature, self similarity does not occur exactly, but there is often a type of statistical self
similarity, where features at different levels exhibit similar statistical characteristics, but at
different scales.

Iterated Functions and Attractor Sets: One of the examples of fractals arising in mathemat-
ics involves sets called attractors. The idea is to consider some function of space and to see
where points are mapped under this function. An elegant way to do this in the plane is to
consider functions over complex numbers. Each coordinate (a, b) in the real plane is asso-
ciated with the complex number a + bi, where i2 = −1. Adding and multiplying complex
numbers follows the familiar rules:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

and
(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i.

Define the modulus of a complex number a + bi to be length of the corresponding vector in
the complex plane,

√
a2 + b2. This is a generalization of the notion of absolute value with

reals. Observe that the numbers of given fixed modulus just form a circle centered around
the origin in the complex plane.

Now, consider any complex number z0 = (a0 + b0i) ∈ C. If we repeatedly square this number,
zi ← z2i−1, for i = 1, 2, 3, then it is easy to verify that with each step the modulus is
also squared. If the modulus of z0 is strictly smaller than 1, then the resulting sequence of
complex numbers will become smaller and smaller (in terms of their moduli) and hence will
converge to the origin in the limit. If the modulus of z0 is strictly larger than 1, the moduli

Lecture 11 1 Spring 2018

http://algorithmicbotany.org/papers/

CMSC 425 Dave Mount & Roger Eastman

will grow to infinity, implying that the sequence will move arbitrarily far from the origin.
Finally, if the modulus is equal to 1, it will remain so, and the sequence will spiral around
the unit circle.

In general, we can do this using any function f : C→ C on the complex plane. We define the
attractor set (or fixed-point set) to be a subset of nonzero points that remain fixed under the
mapping. Note that it is the set as a whole that is fixed, even though the individual points
tend to move around (see Fig. 1).

Fig. 1: An iterated function. The subset within the blue region converges to the origin. The
attractor set (the black curved boundary) is preserved under the function.

Julia and Mandelbrot Sets: For any complex constant c ∈ C, consider the iterated function

zi ← z2i−1 + c for i = 1, 2, 3, . . .

Now as before, under this function, some points will tend toward∞ and others towards finite
numbers. However there will be a set of points that will tend toward neither. Altogether
these latter points form the attractor of the function system. This is called the Julia set for
the point c. An example of such a set is shown in Fig. 2(a).

(a) (b)

Fig. 2: (a) a Julia set and (b) the Mandelbrot set.

Lecture 11 2 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

A common method for approximately rendering Julia sets is to iterate the function until the
modulus of the number exceeds some prespecified threshold. If the number diverges, then we
display one color, and otherwise we display another color. How many iterations? It really
depends on the desired precision. Points that are far from the boundary of the attractor will
diverge quickly. Points that very close, but just outside the boundary may take much longer
to diverge. Consequently, the longer you iterate, the more accurate your image will be.

For some complex numbers c the associated Julia set forms a connected set of points in the
complex plane. For others it is not. For each point c in the complex plane, if we color it black
if Julia(c) is connected, and color it white otherwise, we will a picture like the one shown
below. This set is called the Mandelbrot set (see Fig. 2(b)).

Fractal Dimension: One of the important elements that characterizes fractals is the notion of
fractal dimension. Fractal sets behave strangely in the sense that they do not seem to be 1-,
2-, or 3-dimensional sets, but seem to have noninteger dimensionality.

What do we mean by the dimension of a set of points in space? Intuitively, we know that
a point is zero-dimensional, a line (or generally a curve) is one-dimensional, and plane (or
generally a surface) is two-dimensional, and so on. If you put the object into a higher
dimensional space (e.g., a line in 5-space) it does not change the dimensionality of the object,
it is still a 1-dimensional set. If you continuously deform an object (e.g. deform a line into a
circle or a plane into a sphere) it does not change its dimensionality.

How do you define the dimension of a set in general? There are various methods. Here is
one, which is called fractal dimension. Suppose we have a set in d-dimensional space. Define
a d-dimensional ε-ball to the interior of a d-dimensional sphere of radius ε. An ε-ball is an
open set (it does not contain its boundary) but for the purposes of defining fractal dimension
this will not matter much. In fact it will simplify matters (without changing the definitions
below) if we think of an ε-ball to be a solid d-dimensional hypercube whose side length is 2ε
(an ε-square).

The dimension of an object depends intuitively on how the number of balls its takes to cover
the object varies with ε. First consider the case of a line segment. Suppose that we have
covered the line segment with n ε-balls. If we decrease the size of the covering balls exactly
by 1/2, it is easy to see that it takes roughly twice as many, that is, 2n, to cover the same
segment (see Fig. 3(a)).

n 2n

(a)

n 4n

(b)

Fig. 3: The growth rate of covering numbers and fractal dimension.

Next, let’s consider a square that has been covered with n ε-balls. If we decrease the radius
by 1/2, we see that its now takes roughly four times, that is, 4n, as many balls (see Fig. 3(b)).

Lecture 11 3 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

Similarly, one can see that with a 3-dimensional cube, reducing the radius by a factor of 1/2
increasing the number of balls needed to cover by a factor of 23 = 8. While this is easiest to
see for cubes, it generally holds (in the limit) for any compact “solid” object.

This suggests that the nature of a d-dimensional object is that the number of balls of radius
ε that are needed to cover this object grows as (1/ε)d. To make this formal, given an object
X in d-dimensional space, define

N(X, ε) = smallest number of ε-balls needed to cover X.

(It will not be necessary to the absolute minimum number, as long as we do not use more than
a constant factor times the minimum number.) We claim that an object X has dimension d if
N(X, ε) grows as c(1/ε)d, for some constant c. This applies in the limit, as ε tends to 0. How
do we extract this value of d? Observe that if we compute lnN(X, ε) (any base logarithm
will work) we get ln c+ d ln(1/ε). As ε tends to zero, the constant term c remains the same,
and the d ln(1/ε) becomes dominant. If we divide this expression by ln(1/ε) we will extract
the d.

Thus we define the fractal dimension of a set X to be

d = lim
ε→0

lnN(X, ε)

ln(1/ε)
.

Formally, a set is said to be a fractal if:

(i) it is self-similar (at different scales)

(ii) it has a noninteger fractal dimension

The Sierpinski Triangle: Let’s try to apply this to a more interesting object. Consider the
triangular set X0 shown in the upper right of Fig. 4. To form X1, we scale X0 by 1/2, and
place three copies of it within the outline of the original set. To form X2, we scale X1 by 1/2,
and place three copies of it as before. Let X∗ = limi→∞Xi. This limit is called the Sierpinski
triangle.

1 3 9 = 32 27 = 33

X0 X1 X2 X3 · · · → X∗

Fig. 4: The Sierpinski triangle.

Lecture 11 4 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

In order to compute the fractal dimension of X∗, let’s see how many ε-balls does it take to
cover this figure. It takes one 1-ball to cover X0, three (1/2)-balls to cover X1, nine (1/4)-balls
to cover X2, and in general 3k, (1/2k)-balls to cover Xk. Letting ε = 1/2k, it follows that
N(Xk, 1/2

k) = 3k. Thus, the fractal dimension of the Sierpinski triangle is

d = lim
ε→0

lnN(X, ε)

ln(1/ε)
= lim

k→∞

lnN(Xk, (1/2
k))

ln(1/(1/2k))

= lim
k→∞

ln 3k

ln 2k
= lim

k→∞

k ln 3

k ln 2
= lim

k→∞

ln 3

ln 2
=

ln 3

ln 2
≈ 1.58496

Thus although the Sierpinski triangle resides (or has been embedded) in 2-dimensional space,
it is essentially a 1.58 . . . dimensional object, with respect to fractal dimension.

Although the above derivation is general, it is often easier to apply the following formula
for fractals made through repeated subdivision. Suppose we form an object by repeatedly
replacing each “piece” of size x by b nonoverlapping pieces each of size x/a each. Then the
fractal dimension will be

d =
ln b

ln a
.

The Koch Island: As another example, consider the limit of the shapes K0,K1, . . . shown in
Fig. 4. We start with a square, and with each iteration we replace each line segment of length
x by a chain of 8 subsegments each of length x/4. The limiting shape is called the Koch Island.
Note that the area does not change with each iteration, since for each “outward bump” there is
a matching “inward bump.” However, the perimeter doubles with each iteration, and hence
tends to infinity in the limit. The object itself is of fractal dimension 2, but the object’s
boundary has fractal dimension

ln 8

ln 4
= 1.5.

Since this is not an integer, the boundary of the Koch Island is a fractal.

K0 K1 K2 K3 . . .

Fig. 5: The Koch Island.

L-Systems: Next, we will consider a related issue of how to generate “tree-like” objects, which
are characterized by a process of growth and branching. The standard approach is through a
structure called an L-system. L-systems, short for Lindenmayer-systems, were first proposed
by a biologist Aristid Lindenmayer in 1968, as a mechanism for defining plant development.

Lecture 11 5 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

Fig. 6: Examples of simple plant models generated by L-systems.

If you have taken a course in formal language theory, the concept of an L-system is very
similar to the concept of a context-free grammar. We start with an alphabet, V which is a
finite set of characters, called symbols or variables. There is one special symbol (or generally
a string) ω ∈ V , called the start symbol (or start string). Finally, there is a finite set of
production rules. Each production replaces a single variable with a string (or zero or more)
symbols (which may be variables or constants). Such a rule is expressed in the following form:

〈variable〉 → 〈string〉.

Letting V denote the variables, ω denote the start symbol/string, and P denote the production
rules, an L-system is formally defined by the triple (V, ω, P).

Symbols are categorized in two types: variables are symbols that appear on the left-hand
sides of production rules and can be replaced, and constants (or terminals), which cannot be
replaced. An L-system is said to be deterministic if for each variable, there is a single rule
having this variable on its left side.

To get a better grasp on this, let us consider a simple example, developed by Lindenmayer
himself to describe the growth of the Anabaena catenula algae (see Fig. 7(a)). The variables
are V = {A,B}, there are no constants, the start symbol is ω = A, and the rules are:

P = {A→ AB; B→ A}

An L-system works as follows. Starting with the start symbol, we repeatedly replace each
variable with a compatible rule. In this case, each occurrence of A is mapped to AB and
each occurrence of B is mapped to A. This is repeated for some desired number of levels (see
Fig. 7(b)).

As an aside, if you count the number of symbols in each of the strings, you’ll observe the
sequence 〈1, 2, 3, 5, 8, 13, 21, . . .〉. Is this sequence familiar? This is the famous Fibonacci
sequence, which has been observed to arise in the growth patterns of many organisms.

Using L-Systems to Generate Shapes: So what does this have to do with shape generation?
The idea is to let each symbol represent some sort of drawing command (e.g., draw a line
segment, turn at a specified angle, etc.) This is sometimes referred to as turtle geometry (I

Lecture 11 6 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

A

AB

ABA

ABAAB

ABAABABA

(b)(a)

Fig. 7: L-system modeling the growth of the Anabaena catenula algae.

guess this is because each command is thought of as being relayed to a turtle who carries out
the drawing process).

The system is defined by two parameters, a step size d and a angle increment δ. The state of
the turtle is defined by a triple (x, y, α), where (x, y) is the turtle’s current position and α is
its heading, the direction it is currently facing. Define the following commands (see Fig. 8(a)):

• “F”: Move forward by a step of length d in the current direction, that is, change the
state from (x, y, α) to the new state (x+d cosα, y+d sinα, α), and draw a line from the
current position to the new position.

• “f”: Same as F, but just move without drawing a line.

• “+”: Increase the turn angle by δ, that is, change the state from (x, y, α) to (x, y, α+δ).

• “−”: Decrease the turn angle by δ, that is, change the state from (x, y, α) to (x, y, α−δ).

(a)

(x, y) α f

+

δ

α + δ

δ

F

Current

−
α− δ F +

F

+

+

F

F

F

F

F

F

F F

F F

−

−
−

+

+
+

(b) (c)

start

start

Fig. 8: Turtle-geometry operations.

As an example, let us consider how to design a turtle-geometry L-system that generates the
Koch Island given earlier. Let d = 1 and δ = 90◦. Let us assume that we start in the lower-left
corner of the square ((x, y) = (0, 0)) and the heading is to the east (α = 0).

V = {F, f,+,−}
ω = F + F + F + F

p = {F→ F− F + F + FF− F− F + F}

Lecture 11 7 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

Observe that ω generates a unit square (four line segments with 90◦ turns between each, see
Fig. 8(b)). Then with each subsequent level we replace each existing line segment (F) with
8 segments, with appropriate turns in between (see Fig. 8(c)). To match the scale of earlier
example, we can adjust di = 1/4i in order to generate Ki. This reflects the fact that with
each iteration, the lengths of the line segments decreases by a factor of 1/4.

Turtle-Based Trees: Let us extend this to the generation of tree-like objects. To make this
possible, we will introduce two special symbols “ [” and “]” which intuitively mean respectively
to save the current state on a push-down stack and to pop the stack and restore this as the
current state. Such a system is called an L-system with brackets.

Let’s see if we can apply this for generating a turtle-geometry drawing of a simple tree-like
structure shown in Fig. 9. Intuitively, we identify the symbol “0” with a small stem and a
circular leaf. This will be our starting tree, that is ω = 0.

1

00

1[+0][−0] 1[+1[+0][−0]][−1[+0][−0]]

11
0

0 0

0 11

11

0 0

0 0

00

0 0

0

0

n = 0 n = 1 n = 2 n = 3

1

11

1

1[+1[...left...][−1[...right...]]

start start start start

+ −

Fig. 9: A simple tree-like structure generated by an L-system with brackets. (Note that the figure
is not drawn exactly to scale.) With each branching, the scale factor decreases by roughly 1/2.

To “grow” the tree, we will generate a stem, which will be modeled by a line segment of unit
length in the current direction, and will be denoted in our system by the symbol “1”. The
first-level tree consists of a stem with two copies of the leaf unit, each of half the original size,
one rotated by 45◦ and the other rotated by −45◦. To obtain this, we define two state-control
symbols, “+”, which scales by roughly 1/2 and rotates CCW by −45◦ and “−”, which scales
by roughly 1/2 and rotates CW by 45◦. Thus, our first-level tree can be described by the
string “1[+ 0] [− 0] .” The next level arises by replacing each of the leaf structures in the
same recursive manner. This suggests the following L-system:

V = {0, 1,+,−, [,]}
ω = 0

P = {0→ 1[+ 0] [− 0]}

If we carry out the first few stages of the expansion, we have the following sequences. The

Lecture 11 8 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

associated sequence of drawings is shown in Fig. 9.

n = 0 : 0

n = 1 : 1[+ 0] [− 0]

n = 2 : 1[+ 1[+ 0] [− 0]] [− 1[+ 0] [− 0]]

n = 3 : 1[+ 1[+ 1[+ 0] [− 0]] [− 1[+ 0] [− 0]]] [− 1[+ 1[+ 0] [− 0]] [− 1[+ 0] [− 0]]]

Randomization and Stochastic L-Systems: As described, L-systems generate objects that are
too regular to model natural objects. However, it is an easy matter to add randomization to
the process.

The first way of introducing randomness is to randomize the graphical/geometric operations.
For example, rather than mapping terminal symbols into fixed actions (e.g., draw a unit-
length line segment), we could add some variation (e.g., draw a line segment whose length
is a random value between 0.9 and 1.1). Examples include variations in drawing lengths,
variations in branching angles, and variations in thickness and/or texture (see Fig. 6).

While the above modifications alter the geometric properties of the generated objects, the
underlying structure is still the same. We can modify L-systems to generate random structures
by associating each production rule with a probability, and apply the rules randomly according
to these probabilities. For example consider the following two rules:

a −→[0.4] a[b]

a −→[0.6] b[a]b

The interpretation is that the first rule is to by applied 40% of the time and the second rule
60% of the time.

Lecture 11 9 Spring 2018

