
CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 12
Procedural Generation: 1D Perlin Noise

Reading: The material on Perlin Noise based in part by the notes Perlin Noise, by Hugo Elias.
(The link to his materials seems to have been lost.) This is not exactly the same as Perlin noise,
but the principles are the same.

Procedural Generation: Complex AAA games hire armies of designers to create the immense
content that make up the game’s virtual world. If you are designing a game without such
extensive resources, an attractive alternative for certain natural phenomena (such as terrains,
trees, and atmospheric effects) is through the use of procedural generation. With the aid
of a random number generator, a high quality procedural generation system can produce
remarkably realistic models. Examples of such systems include terragen (see Fig. 1(a)) and
speedtree (see Fig. 1(b)).

(a) (b)

terragen speedtree

Fig. 1: (a) A terrain generated by terragen and (b) a scene with trees generated by speedtree.

Procedural model generation is a useful tool in developing open-world games. For example,
the game No Man’s Sky uses procedural generation to generate a universe with a vast num-
ber of different planets, all with distinct pseudo-randomly-generated ecosystems, including
terrains, flora, fauna, and climates (see Fig. 2). The structure of each planet is not stored on
a server. Instead, each is generated deterministically by a 64-bit seed.

Fig. 2: No Man’s Sky.

Before discussing methods for generating such interesting structures, we need to begin with
a background, which is interesting in its own right. The question is how to construct random

Lecture 12 1 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

noise that has nice structural properties. In the 1980’s, Ken Perlin came up with a powerful
and general method for doing this (for which he won an Academy Award!). The technique is
now widely referred to as Perlin Noise.

Perlin Noise: Natural phenomena derive their richness from random variations. In computer
science, pseudo-random number generators are used to produce number sequences that appear
to be random. These sequences are designed to behave in a totally random manner, so that
it is virtually impossible to predict the next value based on the sequence of preceding values.
Nature, however, does not work this way. While there are variations, for example, in the
elevations of a mountain or the curves in a river, there is also a great deal of structure present
as well.

One of the key elements to the variations we see in natural phenomena is that the magnitude
of random variations depends on the scale (or size) at which we perceive these phenomena.
Consider, for example, the textures shown in Fig. 3. By varying the frequency of the noise
we can obtain significantly different textures.

Fig. 3: Perlin noise used to generate a variety of displacement textures.

The tendency to see repeating patterns arising at different scales is called self similarity and
it is fundamental to many phenomena in science and nature. Such structures are studied
in mathematics under the name of fractals. Perlin noise can be viewed as a type of random
noise that is self similar at different scales, and hence it is one way of modeling random fractal
objects.

Noise Functions: Let us begin by considering how to take the output of a pseudo-random number
generator and convert it into a smooth (but random looking) function. To start, let us consider
a sequence of random numbers in the interval [0, 1] produced by a random number generator
(see Fig. 4(a)). Let Y = 〈y0, . . . , yn〉 denote the sequence of random values, and let us plot
them at the uniformly places points X = 〈0, . . . , n〉.
Next, let us map these points to a continuous function, we could apply linear interpolation
between pairs of points (also called piecewise linear interpolation. As we have seen earlier
this semester, in order to interpolate linearly between two values yi and yi+1, we define a
parameter α that varies between 0 and 1, the interpolated value is

lerp(yi, yi+1, α) = (1− α)yi + αyi+1.

To make this work in a piecewise setting we need to set α to the fractional part of the x-value
that lies between i and i+1. In particular, if we define x mod 1 = x−bxc to be the fractional

Lecture 12 2 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

1

0

(a)

1

0

(b)

1

0

(c)

Random points Piecewise linear interpolation Cosine interpolation

Fig. 4: (a) Random points, (b) connected by linear interpolation, and (c) connected by cosine
interpolation.

part of x, we can define the linear interpolation function to be

f`(x) = lerp(yi, yi+1, α), where i = bxc and α = x mod 1.

The result is the function shown in Fig. 4(b).

While linear interpolation is easy to define, it will not be sufficient smooth for our purposes.
There are a number of ways in which to define smoother interpolating functions. (This is
a topic that is usually covered in computer graphics courses.) A quick-and-dirty way to
define such an interpolation is to replace the linear blending functions (1−α) and α in linear
interpolation with smoother functions that have similar properties. In particular, observe
that α varies from 0 to 1, the function 1− α varies from 1 down to 0 while α goes the other
way, and for any value of α these two functions sum to 1 (see Fig. 5(a)). Observe that the
functions (cos(πα)+1)/2 and (1−cos(πα))/2 behave in exactly this same way (see Fig. 5(b)).
Thus, we can use them as a basis for an interpolation method.

1

0

(a) (b)
0 1

1

0

0 1

α

1− α

(1− cos(πα))/2

(cos(πα) + 1)/2

α α

Fig. 5: The blending functions used for (a) linear interpolation and (b) cosine interpolation.

Define g(α) = (1 − cos(πα))/2. The cosine interpolation between two points yi and yi+1 is
defined:

cerp(yi, yi+1, α) = (1− g(α))yi + g(α)yi+1,

and we can extend this to a sequence of points as

fc(x) = cerp(yi, yi+1, α), where i = bxc and α = x mod 1.

The result is shown in Fig. 4(c). While cosine interpolation does not generally produce very
good looking results when interpolating general data sets. (Notice for example the rather

Lecture 12 3 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

artificial looking flat spot as we pass through the fourth point of the sequence.) Interpolation
methods such as cubic interpolation and Hermite interpolate are preferred. It is worth re-
membering, however, that we are interpolating random noise, so the lack of “goodness” here
is not much of an issue.

Layering Noise: Our noise function is continuous, but there is no self-similarity to its structure.
To achieve this, we will need to combine the noise function in various ways. Our approach
will be similar to the approach used in the harmonic analysis of functions.

Recall that when we have a periodic function, like sin t or cos t, we define (see Fig. 6)

Wavelength: The distance between successive wave crests

Frequency: The number of crests per unit distance, that is, the reciprocal of the wavelength

Amplitude: The height of the crests

wavelength

amplitude

Fig. 6: Properties of periodic functions.

If we want to decrease the wavelength (equivalently increase the frequency) we can scale up
the argument. For example sin t has a wavelength of 2π, sin(2t) has a wavelength of π, and
sin(4t) has a wavelength of π/2. (By increasing the value of the argument we are increasing the
function’s frequency, which decreases the wavelength.) To decrease the function’s amplitude,
we apply a scale factor that is smaller than 1 to the value of the function. Thus, for any
positive reals ω and α, the function α · sin(ωt) has a wavelength of 2π/ω and an amplitude
of α.

Now, let’s consider doing this to our noise function. Let f(x) be the noise function as defined
in the previous section. Let us assume that 0 ≤ x ≤ n and that the function repeats so that
f(0) = f(n) and let us assume further that the derivatives match at x = 0 and x = n. We
can convert f into a periodic function for all t ∈ R, which we call noise(t), by defining

noise(t) = f(t mod n).

(Again we are using the mod function in the context of real numbers. Formally, we define
x mod n = x − n · bx/nc.) For example, the top graph of Fig. 7 shows three wavelengths of
noise(t).

In order to achieve self-similarity, we will sum together this noise function, but using different
frequencies and with different amplitudes. First, we will consider the noise function with
exponentially increasing frequencies: noise(t), noise(2t), noise(4t), . . . , noise(2it) (see Fig. 8).
Note that we have not changed the underlying function, we have merely modified its frequency.
In the jargon of Perlin noise, these are called octaves, because like musical octaves, the

Lecture 12 4 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

frequency doubles.1 Because frequencies double with each octave, you do not need very many
octaves, because there is nothing to be gained by considering wavelengths that are larger than
the entire screen nor smaller than a single pixel. Thus, the logarithm of the window size is a
natural upper bound on the number of octaves.

1

0

1

0

1

0

noise(t)

noise(2t)

noise(4t)

Fig. 7: The periodic noise function at various frequencies.

High frequency noise tends to be of lower amplitude. If we were in a purely self-similar situa-
tion, when the double the frequency, we should halve the amplitude. In order to provide the
designer with more control, Perlin noise allows the designer to specify a separate amplitude
for each frequency. A common way in which to do this is to define a parameter, called persis-
tence, that specifies how rapidly the amplitudes decrease. Persistence is a number between 0
and 1. The larger the persistence value, the more noticeable are the higher frequency com-
ponents. (That is, the more “jagged” the noise appears.) In particular, given a persistence
of p, we define the amplitude at the ith stage to be pi. The final noise value is the sum, over
all the octaves, of the persistence-scaled noise functions. In summary, we have

perlin(t) =
k∑

i=0

pi · noise(2i · t),

where k is the highest-frequency octave.

It is possible to achieve greater control over the process by allowing the user to modify the
octave scaling values (currently 2i) and the persistence values (currently pi).

1In general, it is possible to use factors other than 2. Such a factor is called the lacunarity of the Perlin noise
function. For example, a lacunarity value of ` means that the frequency at stage i will be `i.

Lecture 12 5 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

1

0

1
2

0

0

noise(t)

1
2 · noise(2t)

1
4 · noise(4t)1

4

1

0

perlin(t) = the sum of these

Fig. 8: Dampened noise functions and the Perlin noise function (with persistence p = 1/2).

Lecture 12 6 Spring 2018


